Team:St Andrews/metal-binding
From 2012.igem.org
MPLockhart (Talk | contribs) |
MPLockhart (Talk | contribs) |
||
Line 44: | Line 44: | ||
<h2>Collection</h2> | <h2>Collection</h2> | ||
- | <p>We have focused on the collection process. We have worked in a similar way to Chung et al, in that we have produced a protein with a metal binding peptide on the | + | <p>We have focused on the collection process. We have worked in a similar way to Chung et al., in that we have produced a protein with a metal binding peptide on the terminus of an easily expressible protein (Chan Chung, Cao et al. 2008). The difference is that we used glutathione S-transferase (GST tag) rather than ubiquitin, and instead of adding the binding peptide chemically to the protein we expressed both the protein and the peptide in <i>E. coli</i> BL21 (DE3) cells. These cells are particularly suited to large scale protein production. The peptides sequences were taken from various sources (Seker, Demir 2011, Bae, Chen et al. 2000, Song, Caguiat et al. 2004, White, Liljestrand et al. 2007) and codon optimised for <i>E. coli</i>. The nucleotide sequence that code for the peptides were modified so they could be produced by <i>E. coli</i> using an online program <a href="http://molbiol.ru/eng/scripts/01_19.html">Protein to DNA</a>.</p> |
- | <p>We decided to go down two different routes. The first was making an array of | + | <p>We decided to go down two different routes. The first was making an array of peptides incorporated into GST-protein that bind specific metals, and the second was to make a protein with multiple metal binding sites for multiple metals. </p> |
<h2>Metal Binding Peptides</h2> | <h2>Metal Binding Peptides</h2> | ||
- | <p>With the first of the two ideas we thought that it would be possible use a column to immobilise the protein by its GST tag. A solution containing multiple metal ions would then be passed through the column, which would bind each metal ion specifically. Initially, we decided to take a look at palladium, platinum and nickel (Seker, Demir 2011). The reason for choosing these metals was | + | <p>With the first of the two ideas we thought that it would be possible use a column to immobilise the protein by its GST tag. A solution containing multiple metal ions would then be passed through the column, which would bind each metal ion specifically. Initially, we decided to take a look at palladium, platinum and nickel (Seker, Demir 2011). The reason for choosing these metals was twofold: firstly, because platinum and palladium are particularly precious metals, which provides an economic argument; and secondly, because nickel columns were readily available to test this idea. </p> |
- | <h2>gBlock Scavengers</h2> | + | <h2>gBlock<sup>TM</sup> Scavengers</h2> |
- | <p>The second route would produce a protein that would act as a general metal scavenging protein. gBlocks (≤ 500 bps) were specifically designed and inserted into a pGEX-6P-1. One of them was designed to bind toxic metals: cadmium, mercury and cobalt (Seker, Demir 2011, Bae, Chen et al. 2000, Song, Caguiat et al. 2004, White, Liljestrand et al. 2007). This was done by inserting flexible linkers between the metal binding sites (Hu, Wang et al. 2007). This prevented hairpins in the structure. The second gBlock designed was for precious metals, not including platinum and palladium. The corresponding gene sequences specific for gold, silver, aluminum and titanium peptides (Seker, Demir 2011) were used. The design of this differed from the other gBlock as myoglobin was hijacked, the loops removed and replaced with our metal binding peptides. </p> | + | <p>The second route would produce a protein that would act as a general metal scavenging protein. gBlocks<sup>TM</sup> (≤ 500 bps) were specifically designed and inserted into a pGEX-6P-1. One of them was designed to bind toxic metals: cadmium, mercury and cobalt (Seker, Demir 2011, Bae, Chen et al. 2000, Song, Caguiat et al. 2004, White, Liljestrand et al. 2007). This was done by inserting flexible linkers between the metal binding sites (Hu, Wang et al. 2007). This prevented hairpins in the structure. The second gBlock<sup>TM</sup> designed was for precious metals, not including platinum and palladium. The corresponding gene sequences specific for gold, silver, aluminum and titanium peptides (Seker, Demir 2011) were used. The design of this differed from the other gBlock<sup>TM</sup> as myoglobin was hijacked, the loops removed and replaced with our metal binding peptides. </p> |
Line 158: | Line 158: | ||
</div> | </div> | ||
- | <h2>gBlock procedure</h2> | + | <h2>gBlock<sup>TM</sup> procedure</h2> |
- | <p>Two | + | <p>Two gBlock<sup>TM</sup> sequences were designed and ordered from IDT. </p> |
<div class="btn-toolbar"> | <div class="btn-toolbar"> | ||
Line 245: | Line 245: | ||
</div> | </div> | ||
- | <p>The gBlocks alone were ligated into the iGEM pSB1C3 vector for submission.</p> | + | <p>The gBlocks<sup>TM</sup> alone were ligated into the iGEM pSB1C3 vector for submission.</p> |
<p>The ligation was successful but the BioBricks remain uncharacterised.</p> | <p>The ligation was successful but the BioBricks remain uncharacterised.</p> | ||
Line 334: | Line 334: | ||
<td><a href="http://partsregistry.org/Part:BBa_K925006">BBa_K925006</a></td> | <td><a href="http://partsregistry.org/Part:BBa_K925006">BBa_K925006</a></td> | ||
<td>MyPrecious </td> | <td>MyPrecious </td> | ||
- | <td>This part codes for a gBlock that was designed by hijacking the structure of myoglobin and replacing the loops of the structure with precious metal binding peptides. The part was designed to bind gold, silver, aluminium and titanium. The part is not yet characterised.</td> | + | <td>This part codes for a gBlock<sup>TM</sup> that was designed by hijacking the structure of myoglobin and replacing the loops of the structure with precious metal binding peptides. The part was designed to bind gold, silver, aluminium and titanium. The part is not yet characterised.</td> |
<td>479</td> | <td>479</td> | ||
</tr> | </tr> | ||
Line 340: | Line 340: | ||
<td><a href="http://partsregistry.org/Part:BBa_K925007">BBa_K925007</a></td> | <td><a href="http://partsregistry.org/Part:BBa_K925007">BBa_K925007</a></td> | ||
<td>MyToxic </td> | <td>MyToxic </td> | ||
- | <td>This part codes for a gBlock that was designed by building flexible linker sequences around peptide binding sequences for toxic metals. The part was intended to scavenge cobalt, cadmium and mercury. The part is not yet characterised.</td> | + | <td>This part codes for a gBlock<sup>TM</sup> that was designed by building flexible linker sequences around peptide binding sequences for toxic metals. The part was intended to scavenge cobalt, cadmium and mercury. The part is not yet characterised.</td> |
<td>888</td> | <td>888</td> | ||
</tr> | </tr> |
Revision as of 23:07, 26 September 2012
Metal binding protein
Introduction
Precious and toxic metals frequently find their way into the environment. As their names suggest, such leaks are wasteful and damaging respectively. St Andrews iGEM '12 plans to take on this challenge using synthetic biology.
Inspiration
Our project was inspired by the work done identifying the platinum and palladium particles present on roads, primarily emitted from catalytic converters (Deplanche et al. 2011). In 2010, 50% of the world's platinum and palladium production was used for catalytic converters, with the largest use in Europe (Jollie 2010). Platinum and palladium appear on road surfaces in small concentrations and in minute particles, < 3 μm (Prichard, Fisher 2012). These precious elements are a finite resource! However, their eventual exhaustion can be postponed by collecting and recycling them.
Collection
We have focused on the collection process. We have worked in a similar way to Chung et al., in that we have produced a protein with a metal binding peptide on the terminus of an easily expressible protein (Chan Chung, Cao et al. 2008). The difference is that we used glutathione S-transferase (GST tag) rather than ubiquitin, and instead of adding the binding peptide chemically to the protein we expressed both the protein and the peptide in E. coli BL21 (DE3) cells. These cells are particularly suited to large scale protein production. The peptides sequences were taken from various sources (Seker, Demir 2011, Bae, Chen et al. 2000, Song, Caguiat et al. 2004, White, Liljestrand et al. 2007) and codon optimised for E. coli. The nucleotide sequence that code for the peptides were modified so they could be produced by E. coli using an online program Protein to DNA.
We decided to go down two different routes. The first was making an array of peptides incorporated into GST-protein that bind specific metals, and the second was to make a protein with multiple metal binding sites for multiple metals.
Metal Binding Peptides
With the first of the two ideas we thought that it would be possible use a column to immobilise the protein by its GST tag. A solution containing multiple metal ions would then be passed through the column, which would bind each metal ion specifically. Initially, we decided to take a look at palladium, platinum and nickel (Seker, Demir 2011). The reason for choosing these metals was twofold: firstly, because platinum and palladium are particularly precious metals, which provides an economic argument; and secondly, because nickel columns were readily available to test this idea.
gBlockTM Scavengers
The second route would produce a protein that would act as a general metal scavenging protein. gBlocksTM (≤ 500 bps) were specifically designed and inserted into a pGEX-6P-1. One of them was designed to bind toxic metals: cadmium, mercury and cobalt (Seker, Demir 2011, Bae, Chen et al. 2000, Song, Caguiat et al. 2004, White, Liljestrand et al. 2007). This was done by inserting flexible linkers between the metal binding sites (Hu, Wang et al. 2007). This prevented hairpins in the structure. The second gBlockTM designed was for precious metals, not including platinum and palladium. The corresponding gene sequences specific for gold, silver, aluminum and titanium peptides (Seker, Demir 2011) were used. The design of this differed from the other gBlockTM as myoglobin was hijacked, the loops removed and replaced with our metal binding peptides.
Synthesizing Metal Binding Proteins
For detail on our laboratory procedures, please refer to our Protocols.
Metal binding peptide procedure
Sequences were found for metal binding peptides. The gene sequences for the production of the metal binding peptides were very short. Therefore we were able to have each peptide gene synthesised as two complementary oligonucleotides. We then annealed the primers together. The product of this reaction had the relevant sticky ends for insertion of the sequence into the plasmid vector.
Primers
All primers are notated 5' to 3'.