Team:Evry/AIDSystem

From 2012.igem.org

(Difference between revisions)
Line 36: Line 36:
<h3>Auxin degron system</h3>
<h3>Auxin degron system</h3>
<p>Auxin binds osTir1 and promotes the interraction of E3 ubiquitin which recruits E2. This mechanism allows the polyubiquitination and the adressage of the protein to the proteasome.</p>
<p>Auxin binds osTir1 and promotes the interraction of E3 ubiquitin which recruits E2. This mechanism allows the polyubiquitination and the adressage of the protein to the proteasome.</p>
-
<p>To ensure this system, we checked that <i>Xenopus tropicalis</i> possesses the Skp1, Cul1 and Rbx1 genes.</p>
+
<p>To ensure this system, we checked that <i>Xenopus tropicalis</i> possesses the <a href="http://www.xenbase.org/gene/expression.do?method=displayGenePageExpression&geneId=919630&tabId=1">Skp1</a>, <a href="http://www.xenbase.org/gene/showgene.do?geneId=945765&method=displayGeneSummary">Cul1</a> and <a href="http://www.xenbase.org/gene/showgene.do?method=display&geneId=5779766">Rbx1</a> genes.</p>
<center>
<center>
<img src="https://static.igem.org/mediawiki/2012/b/b4/AuxineDegron.jpg" width="800px" alt="devices for reception" />
<img src="https://static.igem.org/mediawiki/2012/b/b4/AuxineDegron.jpg" width="800px" alt="devices for reception" />

Revision as of 13:58, 26 September 2012

Intertissue communication: An orthogonal hormonal system

We adapted the auxin production device from the iGEM team Imperial college 2011 to eukaryotes and combined it with an auxin detection module. This way, we created the first synthetic hormonal system for inter-tissues communication.

To test this system, we co-injected plasmids expressing our production and reception devices in embryos, a new chassis we wanted to implement for synthetic biology. We performed auxin toxicity and uptake tests at the begining of our project to ensure the feasability.

Auxin production devices

We designed three auxin production devices in embryos. The devices 1 and 2 were designed to be expressed in embryos, while device 3 was designed to be expressed in E. coli. In this last case, the aim is that the tadpoles eat bacteria expressing device 3.

3 devices for production
  • Auxin production device 1 : this device is composed of BBa_K812021, coding for IaaM, and BBa_K812120, coding for IaaH for auxin generator for the use in embryos.
  • Auxin production device 2 : this device is composed of BBa_K812014. It is meant for the co-expression of IaaH and IaaM genes in the same cells in embryos.
  • Auxin production device 3 : this device is composed of BBa_K515100, coding for IaaM and IaaH for auxin generator in E.coli.
Production devices

Pathway

Auxin pathway

Auxin reception devices

Our reception system is based on the auxin-degron system established by K. Nishimura and all. (2009). This system allows a rapid depletion of protein in nonplant cells.

We designed two auxin production devices in embryos. To visualize the communication between different tissues or between E. coli and a tissue of the embryo, we chose to work with GFP. Our orthogonal hormonal system works with any proteins fused to AID signal with any transcription factors.

  • Auxin reception device 1 : this device is composed of BBa_K812010 coding for GFP-AID, and BBa_K812012 coding for OsTir1.
  • Auxin reception device 2 : this device is composed of BBa_K812013 coding for GFP-AID and OsTir1 in the same cell.

devices for reception

Auxin degron system

Auxin binds osTir1 and promotes the interraction of E3 ubiquitin which recruits E2. This mechanism allows the polyubiquitination and the adressage of the protein to the proteasome.

To ensure this system, we checked that Xenopus tropicalis possesses the Skp1, Cul1 and Rbx1 genes.

devices for reception

References:

  1. 1. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature methods 6, 917-22 (2009).