Team:TU-Eindhoven/LEC/LabTheory

From 2012.igem.org

(Difference between revisions)
Line 14: Line 14:
<h4>Chassis</h4>
<h4>Chassis</h4>
-
<p>Before this light emitting cell display project could start, it was necessary to decide on a suitable chassis.  Candidates were E. Coli and S. cerevisiae. Both are common model organisms that can be used for protein expression and are cheap to culture. To reach the goal of this project over expression of voltage-gated calcium channel was needed. As soon as it was found that CCH1-MID1, homologous to mammalian voltage-gated calcium channels, could be over expressed in S. cerevisiae, it was decided to use yeast as the chassis in our project. In the lab we had a strain called INVSc1 available which was compatiable with the plasmids we were planning to use.</p>
+
<p>Before this light emitting cell display project could start, it was necessary to decide on a suitable chassis.  Candidates were E. coli and S. cerevisiae. Both are common model organisms that can be used for protein expression and are cheap to culture. To reach the goal of this project over expression of voltage-gated calcium channel was needed. As soon as it was found that CCH1-MID1, homologous to mammalian voltage-gated calcium channels, could be over expressed in S. cerevisiae, it was decided to use yeast as the chassis in our project. In the lab we had a strain called INVSc1 available which was compatiable with the plasmids we were planning to use.</p>
<h4>Plasmids and transformations</h4>
<h4>Plasmids and transformations</h4>
Line 39: Line 39:
[[File:Fig.1. Emission Spectra GECO]]  
[[File:Fig.1. Emission Spectra GECO]]  
-
<p>A GECO is a protein which emits light in the presence of Ca<sup>2+</sup><html><a href="#ref_zhao" name="text_zhao"><sup>[2]</sup></a></html>. There are two important classes of genetically encoded Ca<sup>2+</sup> indicators. One is called the Forster Resonance Energy Transfer (FRET)-based cameleon type<html><a href="#ref_miyawaki" name="text_miyawaki"><sup>[4]</sup></a></html> and the other one is called the single Green Fluorescent Protein (GFP) type<html><a href="#ref_nakai" name="text_nakai"><sup>[5]</sup></a></html>. The GECO protein belongs to the single GFP type. Research has shown that Ca<sup>2+</sup> indicators targeted to the E.coli periplasm can be shifted toward the Ca<sup>2+</sup>-free or Ca<sup>2+</sup> -bound states by manipulation of the environmental Ca<sup>2+</sup> concentration<html><a href="#ref_zhao" name="text_zhao"><sup>[2]</sup></a></html>. Robert E. Campbell et al. named these Ca<sup>2+</sup> indicators GECOs. R-GECO, G-GECO and B-GECO emit red, green or blue light respectively, each with another emission and excitation spectrum (Fig. 1 and Fig2).</p>
+
<p>A GECO is a protein which emits light in the presence of Ca<sup>2+</sup><html><a href="#ref_zhao" name="text_zhao"><sup>[2]</sup></a></html>. There are two important classes of genetically encoded Ca<sup>2+</sup> indicators. One is called the Forster Resonance Energy Transfer (FRET)-based cameleon type<html><a href="#ref_miyawaki" name="text_miyawaki"><sup>[4]</sup></a></html> and the other one is called the single Green Fluorescent Protein (GFP) type<html><a href="#ref_nakai" name="text_nakai"><sup>[5]</sup></a></html>. The GECO protein belongs to the single GFP type. Research has shown that Ca<sup>2+</sup> indicators targeted to the E. coli periplasm can be shifted toward the Ca<sup>2+</sup>-free or Ca<sup>2+</sup> -bound states by manipulation of the environmental Ca<sup>2+</sup> concentration<html><a href="#ref_zhao" name="text_zhao"><sup>[2]</sup></a></html>. Robert E. Campbell et al. named these Ca<sup>2+</sup> indicators GECOs. R-GECO, G-GECO and B-GECO emit red, green or blue light respectively, each with another emission and excitation spectrum (Fig. 1 and Fig2).</p>
<h3>References</h3>
<h3>References</h3>

Revision as of 10:31, 26 September 2012