Team:St Andrews/Lab-book

From 2012.igem.org

(Difference between revisions)
Line 247: Line 247:
               <div id="collapse10" class="accordion-body collapse" style="height: 0px; ">
               <div id="collapse10" class="accordion-body collapse" style="height: 0px; ">
                 <div class="accordion-inner">
                 <div class="accordion-inner">
-
<p>1. Spin down the <i>E. Coli</i> in a centrifuge.</p>
+
<p>1. The <i>E. Coli</i> was spun down in a centrifuge.</p>
-
<p>2. Discard the supernatant and add in 1 mL of PBS (phosphate buffer saline) to resuspend the pellet, then tansfer to Eppendorf tubes.</p>
+
<p>2. The supernatant was discarded and phosphate buffer saline(PBS, 1 mL) was added to resuspend the pellet before the mix was transferred to an Eppendorf tube.</p>
-
<p>3. Spin down the <i>E. Coli</i> at full speed for 1 min., discard supernatant and then put on ice/in cool room for storage.</p>
+
<p>3. The <i>E. Coli</i> was spun at full speed for 1 min., the supernatant discarded and the pellet was put on ice for storage.</p>
-
<p>4. Prepare lysozyme solution (10 mg/mL) in lysis buffer.</p>
+
<p>4. Lysozyme solution (10 mg/mL) was prepared in lysis buffer.</p>
-
<p>5. Add 200 μL into each pellet and resuspend it; vortex and shaker incubate at 37 °C for 30 min. to 1 h.</p>
+
<p>5. Lysozyme solution (200 μL) was added to each pellet and they were resuspended and vortexed before being incubated in a shaker (37 °C) for 30 min. to 1 h.</p>
-
<p>6. Sonicate the cells.</p>
+
<p>6. The cells were sonicated.</p>
-
<p>7. Take 10 μL total sample and add in 10 μL 2x dye.</p>
+
<p>7. Total sample (10 μL) was removed and 2x dye (10 μL) was added.</p>
-
<p>8. Spin the original tubes for 1 min. at full speed, remove the supernatant, then resuspend the mass with 200 μL PBS.</p>
+
<p>8. \the original tubes were spun for 1 min. at full speed and the supernatant was removed, the mass was resuspended with PBS (200 μL).</p>
-
<p>9. Take 10 μL membrane sample from the resuspended solution and add in 10 μL 2x dye.</p>
+
<p>9. Membrane sample (10 μL) was taken from the resuspended solution and 2x dye (10 μL) was added.</p>
-
<p>10. Denature the protein samples on the heating block at 95° C or 75°C (for membrane protein).</p>
+
<p>10. The protein samples were denatures on a heating block (95° C or 75°C for membrane protein).</p>
-
<p>11. Cool on ice for 1 min., then load the samples to the gel (prepared according to <a gref="http://tryps.rockefeller.edu/Protocols/western_blot_vm.pdf">SDS-PAGE standard protocol</a>) and run at 150 V for around 45 min.</p>
+
<p>11. The samples were cooled on ice for 1 min., then loaded on to the protein gel (prepared according to <a gref="http://tryps.rockefeller.edu/Protocols/western_blot_vm.pdf">SDS-PAGE standard protocol</a>) and run at 150 V for around 45 min.</p>
</div>
</div>
               </div>
               </div>

Revision as of 23:19, 25 September 2012

Lab Book

Protocols

1. Frozen cells were thawed from -80 °C.

2. Thawed cells (10 μL) were mixed with vector (1 μL), and left on ice for 30 min.

3. LB liquid medium (1 mL) was warmed at 37°C for 30 min.

4. The cell/vector mix was heated at 42 °C for 45 seconds.

5. Warm LB (50 μL) was added to the cell vector mix.

6. Mixture was shaken at 37 °C for 30 min.

7. Mixture was plated onto ampicillin agar plates and left overnight.

8. Recombinant E. Coli was harvested from agar plate by scratching gently with the scraper.

9. The scraper tip was placed into Falcon tubes with LB (10 mL) and ampicillin (1 μL) to transfer the E. Coli into medium.

10. The E. Coli was incubated in a shaker at 37 °C for less than 20 hr.

We used Qiagen's QIAprep Spin Miniprep Kit, the protocol can be found here.

1. Preparing 1% agarose solution: Agarose powder (1 g) was dissolved in TAE (Tris base, acetic acid and EDTA) buffer (100 mL). This was heated in the microwave until the solution was transparent. Ethidium Bromide (8 μL) was added.

2. The solution was poured into an assembled gel rigand allowed to set.

3. Prepared samples were loaded into the wells(5-20 μL) along with DNA ladder (5 μL).

4. The gel was run at 80 V for 20-50 min.

5. The gel was visualised under UV light
 

Ratios for sample preparation vary depending on the type of sample:

  • Miniprep - use 4 μL sample and 2 μL dye
  • Digestion - use 1 μL sample and 2 μL dye
  • PCR- use 10μl sample and 1μl dye

When using GoTaq®, simply load 10 μL onto the gel, as dye is already included.

Always make up to 10 μL using water.

1. The sample (30μl) was prepared in the following sequnce:

  • Miniprep (20 μL)
  • Corresponding buffer (8 μL)
  • Each restriction enzyme (1 μL of each)

  •  

    2. The sample was incubated at 37 °C in a water bath. Timings depended on the restriction enzymes brand.

    1. Prepare 20 μM primer working stock for both forward and reverse primers

    2. Prepare PCR according to polymerase brand:

    High-fidelity:

  • buffer (10 μL )
  • water(36 μL )
  • DNTP(1 μL)
  • Forward primer (1 μL)
  • Reverse primer (1 μL)
  • DNA Template (1 μL)
  • This is spun down to mix before adding
  • DNA polymerase (1 μL)
  • Clontech

  • water (22 μL)
  • buffer with dNTPs (25 μL)
  • Forward Primer (1 μL)
  • Reverse Primer (1 μL)
  • DNA(1 μL )
  • This is spun down to mix before adding
  • DNA polymerase (1 μL)
  • KOD

  • water (35 μl)
  • 10x buffer (5 μL)
  • dNTPs(5 μL)
  • MgSO4(5 μL)
  • Forward Primer (1 μL)
  • Reverse Primer (1 μL)
  • DNA (1 μL)
  • This is spun down to mix before adding
  • DNA polymerase(1 μL)

  • GoTaq

  • water (23 μL)
  • GoTaq Master Mix buffer (25 μL)
  • Forward primer (1 μL)
  • Reverse primer (1 μL)
  • We used Epoch BioLab's GenCatch PCR Cleanup Kit (Protocol) and Qiagen's QIAquick Gel Extraction Kit (Protocol).

    1. PCR tubes were prepared in the following sequence:

  • Water (23 μL)
  • GoTaq® MasterMix buffer (23 μL)
  • Forward and reveerse primers (1 μL each)
  • to make a 50μL PCR solution

    2. An Eppendorf tube was prepared for each PRC tube.

    3. Using a small pipette tip, one colony was scratched off a plate and dipped into the tip into the PCR tube. Tips were then stored in the corresponding Eppendorf tubes (for further incubation, if positive).

    4. The PCR was ran using optimal annealing temperatures for the required gene, and then the samples of the PCR run straight on electrophoresis.

    6. Positive results from the samples were incubated from the corresponding tips.

    Ligation molar ratio calculation:

    Exposure intensity from UV light was used to quantify the DNA in ng (i.e. the concentration of both insert and vector) against ladder position for sequence length (i.e. molar weight ratio of the two)
    Rule of 3: Three times as much insert as vector ensures successful ligation results


     

    1. Ligation solution (20 μL) was prepared

    • 10x buffer (2 μL)
    • T4 ligase (2 μL)
    • Vectors and insert (~17 μL), according to calculated ratio
    • make up to a total of 20 μL using water

    2. The ligation mixture was allowed to stand at room temperature for 10-30 minutes..

    3. The ligase-treated vector-insert mixture was mixed with E. Coli (DH5-α)(60 μL), then the standard transformation protocol was followed with shaking for 1 hr; finally LB (200 μL) was added.

    p>

    1. The optimal density (OD) of a portion of the sample (1 mL) was measured in the spectrophotometer using LB as a blank.

    2. If the OD was approximately 0.5 the sample was induced. The sample could be incubated further or diluted if necessary.

    2. IPTG (1 mM) was added.

    1. The E. Coli was spun down in a centrifuge.

    2. The supernatant was discarded and phosphate buffer saline(PBS, 1 mL) was added to resuspend the pellet before the mix was transferred to an Eppendorf tube.

    3. The E. Coli was spun at full speed for 1 min., the supernatant discarded and the pellet was put on ice for storage.

    4. Lysozyme solution (10 mg/mL) was prepared in lysis buffer.

    5. Lysozyme solution (200 μL) was added to each pellet and they were resuspended and vortexed before being incubated in a shaker (37 °C) for 30 min. to 1 h.

    6. The cells were sonicated.

    7. Total sample (10 μL) was removed and 2x dye (10 μL) was added.

    8. \the original tubes were spun for 1 min. at full speed and the supernatant was removed, the mass was resuspended with PBS (200 μL).

    9. Membrane sample (10 μL) was taken from the resuspended solution and 2x dye (10 μL) was added.

    10. The protein samples were denatures on a heating block (95° C or 75°C for membrane protein).

    11. The samples were cooled on ice for 1 min., then loaded on to the protein gel (prepared according to SDS-PAGE standard protocol) and run at 150 V for around 45 min.

    1. Making the membrane transfer sandwiches: 2x A2 at the bottom, then 2x A2.

    2. Cut out the membrane, GE Healthcare HyBond ECL films, using a glass template; put the membrane onto moist A2 filter papers and press flat using a roll; cut off excessive margins if necessary.

    3. Open the gel slides using a wedge; remove the thinner slide and, using the wedge, prize the protein gel from the thicker plate and onto the membrane.

    4. Gently press out air bubbles between the gel and membrane.

    5. Add on CAT filter paper.

    6. Run the machine for 1hr at constant ampere of 40 mA for each gel.

    7. If the rpestained markers have transferred, place the CAT filter papers onto a rocker and add stain. If using Ponceau, the stain can be reused.

    8. Rinse with water to destain.

    21. Pour in 50 mL 5% milk powder and leave on rocker for 2 hours at room temperature; if leaving overnight, rock in cold room using lower speed.

    9. Decant blocking milk solution, and then add in 10 mL 1% milk with 5μl of diluted antibodies. Rock for 1 h.

    10. Pour off the milk-antibody solution and wash with 0.3% PBS and Tween, three times in 10 min. intervals.

    11. Prepare a solution of "Supersignal west Fermto trail" kit (1:1 ratio, 1 mL per membrane).

    12. Moisten membrane with visualization solution, then cover for 5 min. Then, dry off excess liquid.

    13. Develop the membranes in the dark room.


     

    Project-specific procedures

    ω3-Synthesis

    1. Spin down the E. Coli in a centrifuge.

    2. Discard the supernatant and add in 1 mL of PBS to resuspend the pellet, then transfer to Eppendorf tubes.

    3. Spin down the E. Coli again at full speed for 1 min. and discard supernatant.

    4. Resuspend the pellet with 100 μL PBS and then transfer to glass tubes.

    5. Add organic solution for lysis, chloroform:methanol (1:2, 375 μL).

    6. Vortex in the cold room for 1 h and then add 125 μL chloroform and 125 μL water to allow phase separation (lower organic layer contains lipids); let stand for at least 10 min.

    7. Spin down using special adapters at 3000 rpm for 5 min.

    8. Pipette the bottom layer into a glass sample tube, being careful not to take any milky layer.

    9. Dry the organic solvent under nitrogen and store.

    1. Per cell type, there will be 3 samples:

    • A (negative control)
    • B (no added substrate beyond induced 18:1)
    • C (addition of substrate PC lipid 18:1)


     

    2. After labelling all screw-cap Eppendorfs, add the following assay components to each B and C tube:

    • 20 μL of 40 μM tricine buffer, made up to pH 8 with KOH
    • 20 μL of 10 μM MgCl2
    • 10 μL ferredoxin
    • 10 μL of 5μM NADPH
    • 30 μL of catalase
    • 10 μL NADPH+


     

    3. Add 100 μL of membrane sample, prepared as in the lipid extration. Use 500 μL lysozyme, and resuspend in tricine buffer. Run a Bradford assay to determine protein content.

    4. Vortex at 4°C for 2 min.

    5. Leave in water-bath at 37°C.

    6. Add 250 μL chloroform and 250 μL water to stop assay reaction and allow for phase separation.

    7. Samples will be used to carry out mass spec analysis.

    1. Aliquots of the lipd extract were transferred to 2mL glass vessels and dried under nitrogen.

    2. Base hydrolysis to release fatty acids were released by base hydrolysis using 500 µL of concentrated ammonia and 5|0% propan-1-ol (1:1), followed by incubation for 5 h at 50 °C.

    3. After cooling, the samples are evaporated to dryness with nitrogen and dried twice more from 200ul of methanol : water (1:1) to remove all traces of ammonia.

    4. The protonated fatty acids are now extracted by partitioning between 500µL of 20mM HCl and 500uL of ether, the aqueous phase is re-extracted with fresh ether (500µL) and the combined ether phases are dried under nitrogen in a glass tube.

    5. The fatty acids are converted to methyl esters (FAME), by adding diazomethane (3x 20uL aliquots) to the dried residue, while on ice. After 30min, the samples were allowed to warm to RT and left to evaporate to dryness in a fume hood.

    6. The FAME products are dissolved in 10-20µL dichloromethane and 1-2µL analysed by GC-MS on a Agilent Technologies (GC-6890N, MS detector-5973) with a ZB-5 column (30M x 25mm x 25mm, Phenomenex), with a temperature program of at 70 °C for 10min followed by a gradient to 220 °C at 5 °C /min and held at 220 °C for a further 15min.

    7. Mass spectra were acquired from 50-500 amu. The identity of FAMEs was carried out by comparison of the retention time and fragmentation pattern with a Bacterial FAME standard (Supelco).


     

    Metal-binding peptides

    Primer annealing was carried out to create short peptides.

    10 μL of 200 μM of each primer was put into the PCR machine.
     

    PCR Programme:

  • Step 1 94 °C 1 min
  • Step 2 42 °C 1 min
  • Step 3 72 °C 10 seconds
  • Step 4 To step 1
  • Repeat 5 times.
  • 1. Spin down the E. coli in a centrifuge.

    2. Discard the supernatant and add in 1 mL of PBS (phosphate buffer saline) to re-suspend the pellet. Transfer to Eppendorf tubes.

    3. Spin down the E. coli at full speed for 1 min. Discard supernatant and then put on ice for storage.

    4. Prepare lysozyme solution (10 mg/mL) in lysis buffer.

    5. Add 200 μL lysozyme solution to each pellet and re-suspend. Add 1 µL of benzonase nuclease, dissolve 1 protease inhibitor cocktail pill; vortex and incubate in shaker at 37 °C for 30 min. to 1 h.

    6. Sonicate the cells.

    7. Spin down sonicated cells at full speed for 1 min in centrifuge.

    8. Prepare Nickel beads. Take 100 µL of Ni-NTA slurry per sample. Spin in centrifuge at full speed, remove supernatant. Add 100 µL of PBS per sample, re-suspend and spin down at full speed for 1 min.

    9. Remove supernatant; add 100 µL of PBS per sample, re-suspend and transfer to eppendorf tubes 100 µL per sample.Spin down at full speed for 1 minute in centrifuge, remove supernatant. Add supernatant of sonicated cells and re-suspend.

    10. Agitate samples for 30 min to 3 h in cold room.Spin down samples at full speed for 1 minute in centrifuge and remove supernatant.

    11. Add 100 µL of NINTA elution buffer per sample; agitate samples for 10 to 30 min in cold room.

    12. Spin down samples at full speed for 1 min. Take 10 µL of supernatant and add 10µL 2x dye.

    13. Denature the protein samples on the heating block at 95° C.

    14. Cool on ice for 1 min., then load the samples to the gel (prepared according to SDS-PAGE standard protocol) and run at 150 V for 45 min.

    1. Spin down the E. coli in a centrifuge.

    2. Discard the supernatant and add in 1 mL of PBS (phosphate buffer saline) to re-suspend the pellet. Transfer to Eppendorf tubes.

    3. The E. coli was spun down at full speed for 1 min. The supernatant was then discarded and stored on ice.

    4. The lysozyme solution (10 mg/mL) was prepared in lysis buffer.

    5. The lysozyme solution (200 μL) was added to each pellet and re-suspend. Benzonase nuclease (1 μL) was added, and one protease inhibitor cocktail pill was dissolved in the mixture. This was then vortexed and incubated in the shaker (37 °C for 30 min to 1 h).

    6. The cells were then sonicated.

    7. The sonicated cells were then spun down in the centrifuge at full speed for one minute.

    8. GST beads were prepared. GST slurry (100 µL) was added per sample and spun down at full speed. The supernatant was then removed. PBS (100 µL) was added per sample, and the mixture re- suspended and spun down at full speed for 1 min.

    9. The supernatant was then removed and PBS (100 µL) added per sample, re-suspended and transferred to eppendorf tubes, 100 µL per sample. The mixture re-suspended and spun down at full speed for 1 min and supernatant was then removed. The supernatant of the sonicated cells was then added.

    10. 10. The samples were agitated for 30 min to 3 h in the cold room. Samples were spun down at full speed for 1 min. Supernatant was removed.

    11. GST beads were washed with PBS, 200 µL per sample. Samples were spun down at full speed and supernatant was removed. Glutathione solution (50 µl, 100 mM) was added . The samples were agitated for 10 to 30 min in the cold room.

    12. The samples were spun at full speed for 1 min. 10 µL of supernatant was taken and dye (10 µL, 2x) was added.

    13. The protein samples were denatured using the heating block at 95° C.

    14. The samples were cooled on ice (1 min) then loaded onto the gel (prepared according to SDS- PAGE standard protocol) and run at 150 V for 45 min.

    Back to top

    University of St Andrews, 2012.

    Contact us: igem2012@st-andrews.ac.uk, Twitter, Facebook

    This iGEM team has been funded by the MSD Scottish Life Sciences Fund. The opinions expressed by this iGEM team are those of the team members and do not necessarily represent those of Merck Sharp & Dohme Limited, nor its Affiliates.