Team:TU Munich/Modeling/Priors
From 2012.igem.org
(→Reference) |
(→Reference) |
||
Line 113: | Line 113: | ||
* [[http://arohatgi.info/WebPlotDigitizer/app/ 2]] WebPlotDigitizer App | * [[http://arohatgi.info/WebPlotDigitizer/app/ 2]] WebPlotDigitizer App | ||
* [[http://www.mathworks.de/matlabcentral/fileexchange/23972-chebfun 3]] Chebfun - Numerical computation with functions instead of numbers. | * [[http://www.mathworks.de/matlabcentral/fileexchange/23972-chebfun 3]] Chebfun - Numerical computation with functions instead of numbers. | ||
- | * [[http://openwetware.org/images/c/c2/The_N-end_Rule_Pathway_of_Protein_Degradation.pdf 4]] | + | * [[http://openwetware.org/images/c/c2/The_N-end_Rule_Pathway_of_Protein_Degradation.pdf 4]] Alexander, Varshavsky (1997). "The N-end rule pathway of protein degradation". Genes to Cells 2 (1): 13–28. |
Revision as of 15:50, 18 September 2012
Contents |
Prior Data
Yeast mRNA Degradation Rate
Data was obtained from the Paper (Wang et al. 2001 [http://www.pnas.org/content/99/9/5860.long]) and processed by [http://arohatgi.info/WebPlotDigitizer/app/] to obtain raw data. Using a least-squared error approximation the distribution of the half life time in was approximated as noncentral t-distribution with parameters μ = 1.769 and ν = 20.59.
dataGraph = [ 0.0018691649126431735,0.0016851538590669062 0.05978099456360327,0.01885629059542104 0.11548146330755026,0.21910551258377348 0.17122389948476902,0.396902157771723 0.2253457470848775,0.4417136917136917 0.2815821076690642,0.3552607791738227 0.3359848142456839,0.249812760682326 0.39216629434020744,0.19272091011221448 0.4465173486912618,0.11490683229813668 0.5026600896166115,0.07854043723608946 0.5569239808370243,0.04735863431515607 0.6111394480959699,0.04208365077930302 0.667233765059852,0.031624075102336016 0.7233280820237343,0.021164499425369035 0.777540321018582,0.017616637181854626 0.8373665112795547,0.010604847561369285 0.8897063570976615,0.008787334874291503 0.9420462029157682,0.006969822187213598 0.9999935434718044,0.005142624707842157 ]; %scale the data X = round(dataGraph(:,1)*90); y = round(dataGraph(:,2)*2000); k(1) = 1.769292045467269; k(2) = 20.589996419308118; k(3) = 24852.48237036381; k=fminunc(@(z) sum((y-z(3)*nctpdf(X,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*nctpdf(X,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*nctpdf(X,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*nctpdf(X,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*nctpdf(X,z(1),z(2))).^2),k);
The matlab nctpdf.m script needs to compute the limit of an infinite series to calculate the probabilities for the noncentral t-distribution. As this the function will be called several million times during the generation of samples, the computation was quite time consuming and the funtion was approximated using chebyshev interpolation [http://www.mathworks.de/matlabcentral/fileexchange/23972-chebfun].
Yeast Protein Degradation Rate
For the Degradation Rate the N-end rule (Varshavsky et al., 1997 [http://openwetware.org/images/c/c2/The_N-end_Rule_Pathway_of_Protein_Degradation.pdf]) served as approximation for the half life time. It states that the half life time in S. cerevisiae can be approximated based on the amino acid after the initial start codon.
Residue ! Half-life | |
---|---|
Arg | 2 min |
Lys, Phe, Leu, Trp, His, Asp, Asn | 3 min |
Tyr, Gln | 10 min |
Ile, Glu | 30 min |
Pro | > 5 h |
Cys, Ala, Ser, Thr, Gly, Val, Met | > 30 h |
As these values do not give enough information to infer a proper distribution, only the two lower bounds 5 h and 30 h will serve as approximate lower bounds for the optimization routines.
Yeast Transcription Rate
Data was obtained from the Paper (Pelechano et al., 2010 [http://www.pnas.org/content/99/9/5860.long]) and processed by [http://arohatgi.info/WebPlotDigitizer/app/] to obtain raw data. Using a least-squared error approximation the distribution of the transcription rate was approximated as log-normal distribution with parameters μ = -1.492 and σ = 0.661;.
dataGraph = [ -1.8,0.3442950751957339 -1.6,1.3525375039897853 -1.4,3.5492668181220783 -1.2,11.28874786429094 -1.0,23.213749272450762 -0.8,26.31522126884587 -0.6,18.273455248681024 -0.4,7.913623476840467 -0.2,3.7755111620134825 0,1.9559339854677913 0.2,0.6458759692833385 0.4,0.12767315671880167 ]; x = 10.^dataGraph(:,1); y = dataGraph(:,2); k(1) = -0.8; k(2) = 0.2; k(3) = 25; k=fminunc(@(z) sum((y-z(3)*lognpdf(x,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*lognpdf(x,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*lognpdf(x,z(1),z(2))).^2),k); k=fminunc(@(z) sum((y-z(3)*lognpdf(x,z(1),z(2))).^2),k);
Reference
- http://www.pnas.org/content/99/9/5860.long 1 Precision and functional specificity in mRNA decay, Wang et al, PNAS April 30, 2002 vol. 99 no. 9 5860-5865
- http://arohatgi.info/WebPlotDigitizer/app/ 2 WebPlotDigitizer App
- http://www.mathworks.de/matlabcentral/fileexchange/23972-chebfun 3 Chebfun - Numerical computation with functions instead of numbers.
- http://openwetware.org/images/c/c2/The_N-end_Rule_Pathway_of_Protein_Degradation.pdf 4 Alexander, Varshavsky (1997). "The N-end rule pathway of protein degradation". Genes to Cells 2 (1): 13–28.