Team:Evry/Achievements
From 2012.igem.org
(Difference between revisions)
Line 54: | Line 54: | ||
<center><h2><a href="https://2012.igem.org/Team:Evry/Modeling"><img src="https://static.igem.org/mediawiki/2012/5/5b/ModelingDHIUHEIUHD.png" width="200px"></a></h2></center> | <center><h2><a href="https://2012.igem.org/Team:Evry/Modeling"><img src="https://static.igem.org/mediawiki/2012/5/5b/ModelingDHIUHEIUHD.png" width="200px"></a></h2></center> | ||
<ul> | <ul> | ||
- | <li>We used a multi-level approach to | + | <li>We used a <a href="https://2012.igem.org/Team:Evry/Modeling">multi-level approach</a> to model various aspects of the <a href="https://2012.igem.org/Team:Evry/Auxin_diffusion">physiology</a> and < href="https://2012.igem.org/Team:Evry/auxin_production">cellular behaviour</a> of Xenopus.</li> |
- | <li>We | + | <li>All our models <a href="https://2012.igem.org/Team:Evry/model_integration">fit together</a> to comprehensively depict all the processes from the experimental protocol to <a href="https://2012.igem.org/Team:Evry/auxin_detection">reporter expression</a></li> |
+ | <li>We used many modelisation techniques (<a href="https://2012.igem.org/Team:Evry/ODE_model">Ordinary differential equations</a>, <a href="https://2012.igem.org/Team:Evry/auxin_pde">some derived</a> from partial differential equations and <a href="https://2012.igem.org/Team:Evry/plasmid_splitting">Gillespie algorithm</a>) in order to benefit from their respective strength.</li> | ||
</ul> | </ul> | ||
Revision as of 03:54, 27 September 2012
iGEM Evry 2012 achievements
Asides from having lots of fun, meeting great people, gathering around cheese and wine and lazying around the Genopole gardens during lunch break, we also did a little bit of work. Here is a list of our achievements:
- We brought a new multicellular chassis to iGEM
- We submitted 28 biobricks to the registry, including the first working Xenopus biobricks
- We characterized 12 Biobricks: BBa_K812000, BBa_K812050, BBa_K812010, BBa_K812030, BBa_K81203, BBa_K812032, BBa_K812110, BBa_K812130, BBa_K812132, BBa_K812133, BBa_K812200 and BBa_K812233.
- We designed a method for testing multicellular systems in Xenopus rapidly
- We provided 3 new plasmids for using this method, which include debugging tools, BBa_K812000, BBa_K812200, BBa_K812300
- Our reporters and promoters were characterized.
- We designed a multicellular hormonal system
- We created an Auxin production (BBa_K812014) device for use in eukaryotes from the prokaryote one
- We submitted the Tir1 (BBa_K812012) auxin detection device to the registry
- We showed the first Synthetic ecosystem, with a unicellular chassis (E.coli) improved inside a multicellular chassis (Xenopus)
- We designed a new biobrick standard
- We demonstrated it works (still with a low efficiency) and that the protocol have to be further optimized
- We managed to assemble parts with a very high efficiency using Golden Gate and the GoldenBricks plasmids
- We used a multi-level approach to model various aspects of the physiology and < href="https://2012.igem.org/Team:Evry/auxin_production">cellular behaviour of Xenopus.
- All our models fit together to comprehensively depict all the processes from the experimental protocol to reporter expression
- We used many modelisation techniques (Ordinary differential equations, some derived from partial differential equations and Gillespie algorithm) in order to benefit from their respective strength.
- We submitted an extensive report of our conclusions about synthetic biology in vertebrates, which is the fruit of our long reflection we conducted over the summer.