Team:TU-Eindhoven/Future applications/Developments

From 2012.igem.org

(Difference between revisions)
 
Line 28: Line 28:
<ul>
<ul>
-
<li>Measuring and <span class="pink">controlling the localization</span> of the channels. This can be done with fluorescence microscopy, because there are fusion proteins available from CCH1 and Mid1 with EGFP-tag<html><a href="#ref_Iida"name="text_Iida"><sup>[1]</sup></a></html>. It is also possible to influence the localization within the cell, this is currently a major area of research in cellular biology.</li>
+
<li>Measuring and <span class="pink">controlling the localization</span> of the channels. This can be done with fluorescence microscopy, because there are fusion proteins available from CCH1 and MID1 with EGFP-tag<html><a href="#ref_Iida"name="text_Iida"><sup>[1]</sup></a></html>. It is also possible to influence the localization within the cell, this is currently a major area of research in cellular biology.</li>
<li>The measurement of the <span class="pink">dynamic response</span> of the yeast on the calcium influx. This can be done with fluorescence-lifetime imaging microscopy, to measure calcium concentrations in living cells at multiple scales using lifetime contrast. However, only if you are in possession of such an expensive device and if you are able to work with it.</li>
<li>The measurement of the <span class="pink">dynamic response</span> of the yeast on the calcium influx. This can be done with fluorescence-lifetime imaging microscopy, to measure calcium concentrations in living cells at multiple scales using lifetime contrast. However, only if you are in possession of such an expensive device and if you are able to work with it.</li>

Latest revision as of 00:57, 27 September 2012