Team:TU Munich/Project/Caffeine

From 2012.igem.org

(Difference between revisions)
(Caffeine Synthesis Pathway Composite Part BBa_K801077)
 
(415 intermediate revisions not shown)
Line 1: Line 1:
{{Team:TU_Munich/Header}}
{{Team:TU_Munich/Header}}
-
==Background and principles==
+
{{Team:TU_Munich/ExCol}}
-
[[File:TUM12_CaffeineAdenosine.png|right|thumb|200px| '''Caffeine and Adenosine''']]
+
-
Caffeine is a purine- alkaloid and its biosynthesis is known in coffee plants and tea plants, for example. Its chemical structure is similar to the ribonucleoside adenosine. Hence it can block specific receptors in the hypothalamus in a competitive manner, which leads to decreased neurotransmitter- release and therefore decreased neuron activity. Biological background is to beware the brain of overexertion by inducing sleep and that is the reason for using coffeine to stay awake. On average, one cup of coffee contains about 50 - 130 mg Caffeine.
+
-
At higher doses (1g), caffeine leads to higher pulse rates and hyperactivity, but until that i think the beer would have done its work already...
+
=Caffeine=
 +
<hr/>
-
Caffeine was shown to decrease the growth of E. Coli and Yeast reversibly as of a concentration of 0,1% by acting as a mutagen (Putrament et al., On the Specificity of Caffeine Effects, MGG, 1972), but previous caffeine synthesis experiments (see below) have only led to a concentration of about 5 µg/g (per g fresh weight of tobacco leaves), so i do not think we would reach the problematic concentration.
+
[[File:Gruppe_Koffein_TUM12.jpg|350px|thumb||Responsible: Saskia König, Roman Prechtl and Dennis Hell]]
-
It has already been achieved to produce caffeine in tobacco plants ([[Media:TUM12_Caffeine_production_in_tobacco_plants_by_simultaneous_expression_of_three_coffee_N-methyltransferases_and_its_potential_as_a_prest_repellant.pdf| ''Uefuji et al., 2005;'']] [[Media:TUM12_Paper_TransgenicTobacco.pdf‎| ''Yun- Soo Kim et al., 2007'']] ‎), but has never been performed in yeast.
+
<div style="text-align:justify;">Hops is not only one of the main ingredients of beer, it is also responsible for the '''sedative effect of beer''' [[http://www.ncbi.nlm.nih.gov/pubmed/22849837 Franco et al. 2012]].
 +
In contrast, '''caffeine wards off drowsiness''' and already enjoys great popularity as additive in a multitude of beverages.
 +
As hops is essential to the brewing process, omitting hops is not an option. This makes caffeine a '''desirable agent to counteract the soporific effect of beer.'''
-
[[File:TUM12_Metabolism_caffeine.png|right|thumb|200px| '''Biosynthetic Pathway of Caffeine in Plants''']]
+
We were '''successful in expressing (SDS-PAGE and western blot analysis)''' all three genes which are necessary for caffeine biosynthesis (in plants) in yeast strain INVSc1 after having cloned the genes in the new yeast expression vector pTUM104. The proof of '''enzyme functionality''' by detection of synthesized caffeine via LC-MS is already in progress. The three single genes were '''submitted as BioBricks''' [http://partsregistry.org/Part:BBa_K801070 BBa_K801870], [http://partsregistry.org/Part:BBa_K801071 BBa_K801071] and [http://partsregistry.org/Part:BBa_K801072 BBa_K801072].
-
=== Biosynthesis ===
+
Furthermore, we generated the '''caffeine synthesis BioBrick''' [http://partsregistry.org/Part:BBa_K801077 BBa_K801077], which contains all the genes necessary for caffeine synthesis - each gene with a promoter and terminator. The strength of the promoters has been chosen individually.
-
The biosynthetic pathway of caffeine (1,3,7 Trimethylxanthine) starts with xanthosine, which is a natural component of the purine- metabolism of all organism. Necessary for its production are three distinct N- methyl transferases and one nucleosidase, whereupon it has not been totally elucidated whether the nucleosidase reaction is catalyzed by any purine nucleosidase or by the first N- methyl transferase of the reaction cascade shown in the picture (but the latter assumption is favoured (''H. Ashihara et al., 2008)'', because an ''in vitro'' synthesis of caffeine with the three N- methyl transferases has already been shown).
+
In order to investigate the growth of our yeast cells under the influence of caffeine at different concentrations, we also performed a '''toxicity assay'''.
-
I have indicated, that the caffeine syntase (last reaction step) can catalyze both, the conversion of 7- methyl xanthine to  theobromine and the methylation of theobromine to caffeine. This is true, indeed, but [[Media:TUM12_Cloning_and_Characterization_of_N-Methyltransferases_Involvced_in_Caffeine_Biosynthesis.pdf| ''Uefuji et al. (2003)'']] showed, that the affinity to 7- methyl xanthosine is less than one sixth of that of CaMXMT1 (there are two isoformes of CaMXMT), so it is much better to express both enzymes.
+
-
One can also see the K<sub>m</sub> values for the required enzymes in this paper - it shows that the substrate affinity decreases continiously towards the endpoint (caffeine), "making the reaction proceed irreversibly and stepwise" (''Uefuji et al., 2003, p.377).
+
 +
Caffeine production in tobacco plants [[http://www.ncbi.nlm.nih.gov/pubmed/16247553 Uefuji et al., 2005],[http://www.ncbi.nlm.nih.gov/pubmed/18036626 Kim and Sano, 2008]] and in an ''in vitro'' assay has already been shown, but has '''never been performed in yeast'''.
-
[[File:TUM12_Xanthosine_Picture.PNG|right|thumb|200px| '''Xanthosine routes''']]
+
Although the detection of caffeine in our performed enzyme assay turned out to be difficult, '''we were able to show by LC/MS analysis, that theobromine''', the immediate precursor of caffeine, '''can in fact be synthesized''' out of provided Xanthosine by a crude extract derived of ''Saccharomyces cerevisiae'' cells '''having previously been transformed with our "caffeine synthesis Biobrick"''' [http://partsregistry.org/Part:BBa_K801077 BBa_K801077].
-
The chemical compound xanthosine is produced via at least four different routes, shown in the picture "xanthosine routes". To improve caffeine production, these pathways could be a possible target for metabolic engineering. Anyway it should be interesting/ necessary for this project to determine the ''in vivo'' xanthosine concentration of yeast.
+
==Background and Principles==
 +
<hr/>
 +
=== Biosynthesis and Metabolic Engineering===
-
=== Catabolism ===
+
The biosynthetic pathway of caffeine (1,3,7 Trimethylxanthine) starts with xanthosine, which is a '''natural component of the purine metabolism of all organisms.''' Necessary for its production are '''three distinct N-methyl transferases and one nucleosidase'''.  However, it remains to be elucidated whether the nucleosidase reaction is catalyzed by an unspecific purine nucleoside phosphorylase (PNP) or by the first N-methyl transferase of the reaction cascade shown in the picture (Fig. 1). Being involved in the catabolism of all purine nucleosides, PNP is an essential enzyme for organisms and was shown to catalyze the removal of the ribose moiety of 7-methylxanthine in ''in vitro'' caffeine biosynthesis [[http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003]]. The ''in vivo'' synthesis of caffeine has also been shown by expression of the three N-methyl transferases in tobacco plants. Therefore, the assumption that the first methyl transferase is '''bifunctional and catalyzes the nucleosidase reaction''' is favored [[http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008]], [[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914188/ McCarthy and McCarthy, 2007]]. The presence of PNP or equal enzymes in plants has not yet been proven and a catalytic mechanism of the nucleosidase reaction is rather thinkable and has been explained by [[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914188/ McCarthy and McCarthy, 2007]].  As a matter of fact, a single N-methyl nucleosidase, as it is shown on the depicted pathway below, has indeed been partially purified out of tea leaves [[http://ci.nii.ac.jp/naid/110006323439/ Negishi et al. (1988)]], but neither the native enzyme nor its DNA have ever been isolated [[http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008]].
-
Caffeine is demethylated to theophylline by 7N- demethylase (main pathway). The decreased rate of this reaction is the reason for the accumulating caffeine in the plant. Afterwards theophylline is degraded to xanthine via 3- methylxanthine and xanthine enters the conventional purine catabolism pathway (degradation to CO2 and NH3) (see [[Media:TUM_Paper_Caffeine_biosynthesis.pdf| ''H. Ashihara et al., 2008, p. 846'']]). This catabolistic pathway is another possible target for metabolic engineering to increase the amount of caffeine (e.g. partially inhibition of 7N- demethylase (?))
+
The enzyme caffeine synthase (last reaction step) can catalyze both the conversion of 7-methyl xanthine to theobromine and the methylation of theobromine to caffeine. Unfortunately, the affinity of this enzyme to 7-methyl xanthosine is less than one sixth of that of the other isoform CaMXMT1 [[http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003]]. To obtain the best results, we decided to express both enzymes. One can also see the K<sub>m</sub> values for the required enzymes in this paper - it shows that the substrate affinity decreases continuously towards the endpoint (caffeine), "making the reaction proceed irreversibly and stepwise" [[http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003]]. [[File:TUM12_XanthosineWege.jpg‎|right|thumb|480px| '''Fig. 1: Xanthosine providing metabolic pathways''']]
-
==Idea==
 
-
The idea is to perform a heterologous gene expression of the distinct N-methyl transferases required for caffeine biosynthesis. The research groups which accomplished caffeine production in transgenic tobacco plants used the following three genes:
 
-
* CaXMT1 (AB048793)
+
The chemical compound xanthosine is produced via '''at least four different routes''', shown in the picture "xanthosine routes". To improve caffeine production, these pathways could be a '''possible target for metabolic engineering in the future'''.
-
** UniProt entry: Q9AVK0
+
[[File:TUM12_Caffeinebiosys.png|thumb|900px|'''Fig. 2: Pathway for ''in vivo'' caffeine biosynthesis in ''coffea arabica'']]
-
** E.C.: 2.1.1.158
+
During the degradation of caffeine, it is demethylated to theophylline by 7N-demethylase (main pathway). The decreased rate of this reaction is the '''reason for the accumulation of caffeine in the plant.''' Afterwards, theophylline is degraded to xanthine via 3-methylxanthine and xanthine enters the conventional purine catabolism pathway (degradation to CO<sub>2</sub> and NH<sub>3</sub>) [[http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008]]. This catabolistic pathway is '''another possible target''' for metabolic engineering to increase the amount of caffeine.
-
** PDB: 3D- Structure: [[http://www.pdb.org/pdb/explore/explore.do?structureId=2eg5]] (Structure of ''C. canephora''- CaXMT1)
+
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
-
** Complete mRNA- sequence: [[http://www.ncbi.nlm.nih.gov/nuccore/AB048793  CaXMT1]] (''coffea arabica'')
+
-
** Coding sequence: bp 45 - 1163 ==> total length: 1119 bp
+
-
** Problematic restriction sites: ''EcoR1'' at bp 104- 109
+
-
* CaMXMT1 (AB048794)
+
===The Molecular and Physiological Effects of Caffeine===
-
** UniProt entry: Q9AVJ9
+
[[File:TUM12_CaffeineAdenosine.png|right|thumb|250px| '''Fig. 3: Similar structures of caffeine and adenosine''']]
-
** 2.1.1.159
+
Caffeine is a '''purine alkaloid''' and its biosynthesis occurs in coffee plants and tea plants. Its chemical structure is similar to that of the ribonucleoside adenosine. Hence, it can '''block specific receptors in the hypothalamus'''. Adenosine binding leads to decreased neurotransmitter release and therefore decreased neuron activity. This induces sleep and thus avoids overexertion of the brain. Since caffeine '''antagonizes adenosine and increases neuronal activity''', it is used as a means to stay awake. On average, one cup (150 ml) of coffee contains about 50 - 130 mg caffeine and one cup of tea about 25 - 90 mg. At higher doses (1 g), caffeine leads to higher pulse rates and hyperactivity, but until that, the alcohol will already have done its work...
-
** This gene is eventually not essential, for CaDXMT1 is able to catalyze this reaction, too.
+
-
** Complete mRNA- sequence: [[http://www.ncbi.nlm.nih.gov/nuccore/AB048794 CaMXMT1]] (''coffea arabica'')
+
-
** Coding sequence: bp 32 - 1168 ==> total length: 1137 bp
+
-
** Problematic restriction sites: ''EcoR1'' at bp 722- 728
+
-
* CaDXMT1 (AB084125)
+
Moreover, caffeine was shown to decrease the growth of ''E. Coli'' and yeast reversibly as of a concentration of 0.1 % by acting as a mutagen (Putrament et al., On the Specificity of Caffeine Effects, MGG, 1972), but previous caffeine synthesis experiments (see below) have only led to a concentration of about 5 µg/g (per g fresh weight of tobacco leaves). Therefore, we do not expect to reach critical concentrations and the amounts of caffeine in coffee or tea (leading to physiological effects) is usually a little bit lower.
-
** UniProt entry: Q8H0D2
+
-
** 2.1.1.160
+
-
** PDB: 3D- Structure: [[http://www.pdb.org/pdb/explore/explore.do?structureId=2efj]] (Structure of ''C. canephora''- CaDXMT1)
+
-
** Complete mRNA- sequence: [[http://www.ncbi.nlm.nih.gov/nuccore/AB084125  CaDXMT1]] (''coffea arabica'')
+
-
** Coding sequence: bp 1- 1155 ==> total length: 1155 bp
+
-
** Problematic restriction sites: ''EcoR1'' at bp 691- 697 and at bp 705- 711
+
-
=== General ===:
+
</div>
-
In any case, we will have to order special RBS from the Partsregistry, for example [[http://partsregistry.org/wiki/index.php?title=Part:BBa_J63003  BBa_J63003]], because they exhibit organism- specificity. However, an RBS is not essential in eukaryotic gene translation.
+
== Results ==
 +
<hr/>
 +
===BioBricks===
-
All mentionend methyltransferases use SAM als methyl- donor and are located in the cytoplasm of the plants. Furthermore they exist as homodimers, being also able to form heterodimers with each other (see [http://www.brenda-enzymes.org/php/result_flat.php4?ecno=2.1.1.160| BRENDA], also for further characteristics). The temperature and pH optimum of all three enzymes is quite similar between 20°C - 37°C and 7,5 - 8,5, respectively. (On a recent brewery guide tour i happend to learn that the pH of beer is slightly acid, but i do not know how much influence that would have on the enzyme activity).
+
[[File:TUM12_new_Coffein_Biobricks.jpg|right|thumb|300px|'''Fig. 4: Biobricks created for caffeine synthesis''']]
 +
All the generated BioBricks are based on mRNA sequences that have been isolated from ''Coffea arabica'' by Hiroshi Sano et al., 2003, and registered at [http://www.ncbi.nlm.nih.gov/pubmed/ NCBI] (see numbers below). However, these '''sequences were modified''' in several ways, to make them '''iGEM compatible''' and '''improve the usage''' in general.
-
==General remarks and issues==
+
'''Modifications:'''
 +
* the 5' UTR and 3' UTR of the original sequences were removed
 +
* the '''yeast consensus sequence''' for improved ribosome binding (TACACA) was added 5' of the start codon ATG
 +
* according to the '''N- end rule''' and the yeast consensus sequence for improved ribosome binding, the first triplet after ATG (GAG) was exchanged with TCT (serine) to optimize protein stability and mRNA translation. This decision was made after analysis of the 3D- structure of the enzyme CaDXMT1. Because the first two residues of the amino acid sequence are not shown in the crystallized structure (probably because of high flexibility) we chose to exchange this amino acid. Further study (uniprot entry) showed that the first two residues of the sequence are not immediately involved in ligand binding in one of the three enzymes. Due to high similarity of the sequences of the three enzymes, we also changed this amino acid in the enzymes CaXMT1 and CaMXMT1.
 +
* we added a '''C- terminal ''Strep''-tag''' for purification and detection
 +
* the remaining coding sequence was extended with the standard '''RFC10 prefix and suffix'''
 +
* we made an '''optimization of the coding sequences''' with respect to the '''codon usage in yeast and mRNA structures''' (online tool of gene-synthesis company)
 +
* we exchanged all critical restriction sites (RFC10 and RFC25)
-
'''Analytical Methods'''
+
All mentioned methyltransferases use SAM as methyl donor and are located in the cytoplasm of the plants. Furthermore, they exist as homodimers, being also able to form heterodimers with each other (see [http://www.brenda-enzymes.info Brenda], also for further characteristics). The temperature- and pH-optima of all three enzymes are quite similar (between 20°C - 37°C and 7,5 - 8,5). The pH-optimum is compatible with the slightly acidic environment during beer brewing.
-
* Detection and quantification of the produced caffeine can be performed by the use of HPLC. [[Media:TUM12_Caffeine_production_in_tobacco_plants_by_simultaneous_expression_of_three_coffee_N-methyltransferases_and_its_potential_as_a_prest_repellant.pdf| ''Uefuji et al., 2005;'']] describe those and other relevant methods in this context.
+
<br/><br/>
-
* Proof of the gene- expression (of the necessary methyl- transferases) could be accomplished by standard methods (RT PCR and Western Blot, see also [[Media:TUM12_Caffeine_production_in_tobacco_plants_by_simultaneous_expression_of_three_coffee_N-methyltransferases_and_its_potential_as_a_prest_repellant.pdf| ''Uefuji et al., 2005;'']] and [[Media:TUM12_Paper_TransgenicTobacco.pdf| ''Yun- Soo Kim and Hiroshi Sano, 2007;'']])
+
 +
<div class="mfull bezel">
 +
==== [http://partsregistry.org/Part:BBa_K801070 BBa_K801070] RFC10 compatible BioBrick encoding the enzyme CaXMT1 ====
-
=== Gene Expression ===
+
'''NCBI access number of original gene sequence:''' AB048793
-
* To increase gene expression it is possible to work with double promoter constructs. I am working with that in my bachelors thesis and my adviser said this would be an often underrated possibility to improve gene expression. Perhaps we can make use of this.
+
 +
This RFC10 compatible BioBrick encodes the enzyme CaXMT1 (xanthosine N-methyltransferase 1 of ''coffea arabica''). It catalyzes the first reaction step of the caffeine biosynthesis pathway.
-
=== cDNA Synthesis ===
+
'''Further information:'''
-
* If we do not want to order the sequences for the N- methyl transferases, another possibility would be an isolation of the corresponding genes by cDNA synthesis. Of course, it would be much more elaborate and i also do not know, wether it would be cheaper in the end. Anyway,[[Media:TUM12_Cloning_and_Characterization_of_N-Methyltransferases_Involvced_in_Caffeine_Biosynthesis.pdf| ''Uefuji et al. (2003)'']] show how they got their sequences. Interesting thing: Due to high sequence- homology of those three genes (partly up to 97%), one primer- pair is enough, to generate all three cDNAs, because their sequences (containing both, start and stop- codon) are absolutely identical in each gene.
+
* UniProt entry: Q9AVK0
 +
* E.C. Number: 2.1.1.158
 +
* PDB: 3D- Structure: [http://www.pdb.org/pdb/explore/explore.do?structureId=2eg5 ''C. canephora'' CaXMT1]
 +
* Part length: 1158 bp
 +
</div>
-
==Biobricks and sequences==
+
<div class="mfull bezel">
-
'''CaXMT1'''
+
==== [http://partsregistry.org/Part:BBa_K801071 BBa_K801071] RFC10 compatible BioBrick encoding the enzyme CaMXMT1 ====
-
>gi|13365750|dbj|AB048793.1| Coffea arabica CaXMT1 mRNA for xanthosine methyltransferase, complete cds
+
'''NCBI access number of original gene sequence:''' AB048794
-
        1 ctttggcagt cccaatttga tttatgtaca agtcctgcat atgaatggag ctccaagaag
+
-
      61 tcctgcggat gaatggaggc gaaggcgata caagctacgc caagaattca gcctacaatc
+
-
      121 aactggttct cgccaaggtg aaacctgtcc ttgaacaatg cgtacgggaa ttgttgcggg
+
-
      181 ccaacttgcc caacatcaac aagtgcatta aagttgcgga tttgggatgc gcttctggac
+
-
      241 caaacacact tttaacagtt cgggacattg tccaaagtat tgacaaagtt ggccaggaaa
+
-
      301 agaagaatga attagaacgt cccaccattc agatttttct gaatgatctt ttcccaaatg
+
-
      361 atttcaattc ggttttcaag ttgctgccaa gcttctaccg caaacttgag aaagaaaatg
+
-
      421 gacgcaaaat aggatcgtgc ctaatagggg caatgcccgg ctctttctac agcagactct
+
-
      481 tccccgagga gtccatgcat tttttacact cttgttactg tcttcaatgg ttatctcagg
+
-
      541 ttcctagcgg tttggtgact gaattgggga tcagtacgaa caaagggagc atttactctt
+
-
      601 ccaaagcaag tcgtctgccc gtccagaagg catatttgga tcaatttacg aaagatttta
+
-
      661 ccacatttct aaggattcat tcggaagagt tgttttcaca tggccgaatg ctccttactt
+
-
      721 gcatttgtaa aggagttgaa ttagacgccc ggaatgccat agacttactt gagatggcaa
+
-
      781 taaacgactt ggttgttgag ggacatctgg aggaagaaaa attggatagt ttcaatcttc
+
-
      841 cagtctatat accttcagca gaagaagtaa agtgcatagt tgaggaggaa ggttcttttg
+
-
      901 aaattttata cctggagact tttaaggtcc tttacgatgc tggcttctct attgacgatg
+
-
      961 aacatattaa agcagagtat gttgcatctt ccgttagagc agtttacgaa cccatcctcg
+
-
    1021 caagtcattt tggagaagct attatacctg acatattcca caggtttgcg aagcatgcag
+
-
    1081 caaaggttct ccccttgggc aaaggcttct ataataatct tatcatttct ctcgccaaaa
+
-
    1141 agccagagaa gtcagacgtg taaaagtttg tttttgtgtt ggggaaagga ataagtgccg
+
-
    1201 ttgggggtct ttcgggtatt gtgcttttta tattatattg ttttgtatcc gtaataaaag
+
-
    1261 tggtgtgtaa gaataagata tttgacatat attattttca aaaaaaaaaa aaaaaa
+
-
{| class="wikitable" cellpadding="10" border=1px
+
-
| Name || Length || RFC10 || RFC25 || Codon Usage || NCBI  
+
-
|-
+
-
| 7-Methylxanthosintransferase || 1119bp || 1x EcoRI(104-110) || ok after RFC10 || 5AS<10% || [http://www.ncbi.nlm.nih.gov/nuccore/AB048793 AB048793]
+
-
|}
+
 +
This RFC10 compatible BioBrick encodes the enzyme CaMXMT1 (7-methylxanthine N-methyltransferase of ''coffea arabica''). It catalyzes the third reaction step of caffeine biosynthesis pathway.
 +
'''Further information:'''
 +
* UniProt entry: Q9AVJ9
 +
* E.C. Number: 2.1.1.159
 +
* Part length: 1176 bp
 +
</div>
 +
<div class="mfull bezel">
 +
==== [http://partsregistry.org/Part:BBa_K801072 BBa_K801072] RFC10 compatible BioBrick encoding the enzyme CaDXMT1 ====
-
'''CaMXMT1'''
+
'''NCBI access number of original gene sequence:''' AB084125
-
>gi|13365752|dbj|AB048794.1| Coffea arabica CaMXMT1 mRNA for 7-methylxanthine N-methyltransferase, complete cds
+
This RFC10 compatible BioBrick encodes the enzyme CaDXMT1 (3,7-dimethylxanthine N-methyltransferase of ''coffea arabica''). It catalyzes the fourth reaction step of the caffeine biosynthesis, leading to caffeine.
-
        1 agcagtcgca attcgattgt cctgcatatg aatggagctc caagaagtcc tgcatatgaa
+
-
      61 tgaaggtgaa ggcgatacaa gctacgccaa gaatgcatcc tacaatctgg ctcttgccaa
+
-
      121 ggtgaaacct ttccttgaac aatgcatacg agaattgttg cgggccaact tgcccaacat
+
-
      181 caacaagtgc attaaagttg cggatttggg atgcgcttct ggaccaaaca cacttttaac
+
-
      241 agtgcgggac attgtgcaaa gtattgacaa agttggccag gaagagaaga atgaattaga
+
-
      301 acgtcccacc attcagattt ttctgaatga tcttttccaa aatgatttca attcggtttt
+
-
      361 caagttgctg ccaagcttct accgcaaact cgagaaagaa aatggacgca agataggatc
+
-
      421 gtgcctaata agcgcaatgc ctggctcttt ctacggcaga ctcttccccg aggagtccat
+
-
      481 gcattttttg cactcttgtt acagtgttca ttggttatct caggttccca gcggtttggt
+
-
      541 gattgaattg gggattggtg caaacaaagg gagtatttac tcttccaaag gatgtcgtcc
+
-
      601 gcccgtccag aaggcatatt tggatcaatt tacgaaagat tttaccacat ttctaaggat
+
-
      661 tcattcgaaa gagttgtttt cacgtggccg aatgctcctt acctgcattt gtaaagtaga
+
-
      721 tgaattcgac gaaccgaatc ccctagactt acttgacatg gcaataaacg acttgattgt
+
-
      781 tgagggactt ctggaggaag aaaaattgga tagtttcaat attccattct ttacaccttc
+
-
      841 agcagaagaa gtaaagtgca tagttgagga ggaaggttct tgcgaaattt tatatctgga
+
-
      901 gacttttaag gcccattatg atgctgcctt ctctattgat gatgattacc cagtaagatc
+
-
      961 ccatgaacaa attaaagcag agtatgtggc atcattaatt agatcagttt acgaacccat
+
-
    1021 cctcgcaagt cattttggag aagctattat gcctgactta ttccacaggc ttgcgaagca
+
-
    1081 tgcagcaaag gttctccaca tgggcaaagg ctgctataat aatcttatca tttctctcgc
+
-
    1141 caaaaagcca gagaagtcag acgtgtaaaa gtttgttttt agttggtttt tgtgccgttg
+
-
    1201 ggggtctttc gggtattgtc gttttgtatt cgtaataaaa gtgatgtgca agaataagat
+
-
    1261 atttagtaca atattttcat aaaaaaaaaa aaaaaaaa
+
-
{| class="wikitable" cellpadding="10" border=1px
+
-
| Name || Length || RFC10 || RFC25 || Codon Usage || NCBI
+
-
|-
+
-
| N-Methylnucleosidase || 1137bp || 1x EcoRI(722-728) || ok after RFC10 || 2AS<10% || [http://www.ncbi.nlm.nih.gov/nuccore/AB048794 AB048794]
+
-
|}
+
 +
'''Further information:'''
 +
* UniProt entry: Q8H0D2
 +
* 2.1.1.160
 +
* PDB: 3D- Structure: [http://www.pdb.org/pdb/explore/explore.do?structureId=2efj ''C. canephora'' CaDXMT1]
 +
* Part length: 1194 bp
 +
</div>
 +
<div class="mfull bezel">
-
'''CaDXMT'''
+
==== [http://partsregistry.org/wiki/index.php?title=Part:BBa_K801073 BBa_K801073] Generator BioBrick for CaXMT1 ====
-
>gi|30023549|dbj|AB084125.1| Coffea arabica CaDXMT1 mRNA for 3,7-dimethylxanthine N-methyltransferase, complete cds
+
This BioBrick generates the enzyme '''xanthosine N-methyltransferase 1 (CaXMT1)'''. It is regulated by the constitutive promoter ''Tef2'', which is a strong yeast promoter. The used terminator is ''Adh1'', a widely used yeast terminator.  
-
        1 atggagctcc aagaagtcct gcatatgaat ggaggcgaag gcgatacaag ctacgccaag
+
-
      61 aactcattct acaatctgtt tctcatcagg gtgaaaccta tccttgaaca atgcatacaa
+
-
      121 gaattgttgc gggccaactt gcccaacatc aacaagtgca ttaaagttgc ggatttggga
+
-
      181 tgcgcttctg gaccaaacac acttttaaca gttcgggaca ttgtacaaag tattgacaaa
+
-
      241 gttggccagg aaaagaagaa tgaattagaa cgtcccacca ttcagatttt tctgaatgat
+
-
      301 cttttccaaa atgatttcaa ttcggttttc aagtcgctgc caagcttcta ccgcaaactt
+
-
      361 gagaaagaaa atggacgcaa aataggatca tgcctgatag gcgcaatgcc tggctctttc
+
-
      421 tacggcagac tcttccccga ggagtccatg cattttttac actcttgtta ctgtttgcat
+
-
      481 tggttatctc aggttcccag cggtttggtg actgaattgg ggatcagtgc gaacaaaggg
+
-
      541 tgcatttact cttccaaagc aagtcgtccg cccatccaga aggcatattt ggatcaattt
+
-
      601 acgaaagatt ttaccacatt tcttaggatt cattcggaag agttgatttc acgtggccga
+
-
      661 atgctcctta cttggatttg caaagaagat gaattcgaga acccgaattc catagactta
+
-
      721 cttgagatgt caataaacga cttggttatt gagggacatc tggaggaaga aaaattggac
+
-
      781 agtttcaatg ttccaatcta tgcaccttca acagaagaag taaagtgcat agttgaggag
+
-
      841 gaaggttctt ttgaaatttt atacctggag acttttaagg tcccttatga tgctggcttc
+
-
      901 tctattgatg atgattacca aggaagatcc cattccccag tatcctgcga tgaacatgct
+
-
      961 agagcagcgc atgtggcatc tgtcgttaga tcaattttcg aacccatcgt cgcaagtcat
+
-
    1021 tttggagaag ctatcatgcc tgacttatcc cacaggattg cgaagaatgc agcaaaggtt
+
-
    1081 cttcgctccg gcaaaggctt ctatgatagt cttatcattt ctctcgccaa aaagccagag
+
-
    1141 aagtcagacg tgtaa
+
-
{| class="wikitable" cellpadding="10" border=1px
+
-
| Name || Length || RFC10 || RFC25 || Codon Usage || NCBI
+
-
|-
+
-
| N-Methylnucleosidase || 1155bp || 2x EcoRI(691-697/705-711) || ok after RFC10 || 2AS<10% || [http://www.ncbi.nlm.nih.gov/nuccore/AB084125 AB084125]
+
-
|}
+
 +
This BioBrick is also a part of the '''"caffeine synthesis device"''' (see below) and the accuracy of the sequence has been proven by sequencing.
 +
</div>
 +
<div class="mfull bezel">
-
=== General ===
+
==== [http://partsregistry.org/wiki/index.php?title=Part:BBa_K801074 BBa_K801074] Generator BioBrick for CaMXMT1====
-
Theoretically, we only need the coding sequences of the genes, because we ought to use the special RBS and Terminator biobricks from the registry and thus do not need the existing ones (in  the 5' UTR and 3' UTR, respectively) (Anyway, they would probably not work in yeast)
+
This BioBrick generates the enzyme '''7-methylxanthine N-methyltransferase 1(CaMXMT1)''' (= theobromine synthase). It is regulated by the constitutive promoter ''Tef1'', which is one of the strongest yeast promoters. The used terminator is ''Adh1'', as it is among the other expression cassettes.
-
'''Finally ordered Sequences'''
+
This BioBrick is also a part of the '''"caffeine synthesis device"''' (see below) and the accuracy of the sequence has been proven by sequencing.
 +
</div>
 +
<div class="mfull bezel">
-
The ordered sequences were constructed as follows:  
+
====  [http://partsregistry.org/wiki/index.php?title=Part:BBa_K801075 BBa_K801075] Generator BioBrick for CaDXMT1 ====
-
* the 5' UTR and 3' UTR of the sequences above were removed
+
 
-
* the yeast consensus sequence for improved ribosome binding (TACACA) was added 5' of the start codon ATG
+
This BioBrick generates the enzyme '''3,7-dimethylxanthine N-methyltransferase 1 (CaDXMT1)''' (= caffeine synthase), i.e. the last enzyme involved in caffeine biosynthesis. It is regulated by the constitutive promoter ''Tef2'', which is also used at the expression cassette of CaXMT1. The used terminator is ''Adh1'', as it is among the other expression cassettes.
-
* according to n- end rule and the yeast consensus sequence for improved ribosome binding, the first triplet after ATG (GAG) was exchanged with TCT (serine), to optimize both, protein stability and mRNA translation. This decision was made after proofing the 3D- structure of the enzyme CaDXMT1. Due to the fact, that the the first two residues of the amino acid sequence are not shown in the crystalized structure (probably because of high flexibility), Prof. Skerra said we can risk the exchange of this amino acid, for it is probably not that necessary for the uptake of the ligands (uniprot entry further shows, that it is not immediately involved in ligand binding in one of the three enzymes). Because of the high similarity of the enzyme- sequences, we also exchanged this amino acid in the enzyme CaMXMT1, although here is no 3D- structure available
+
 
-
* we added a c- terminal strep-tag for purification
+
This BioBrick is also a part of the '''"caffeine synthesis device"''' (see below) and the accuracy of the sequence has been proven by sequencing.
-
* the remaining coding sequence was extended with the standard RFC10 prefix and suffix, respectively
+
</div>
-
* at last we made an optimization of the coding sequences with respect to the codon usage and mRNA structures (online tool of a gene- synthesis company)
+
<div class="mfull bezel">
-
* annotated sequences:
+
 
-
** CaXMT1: [[Media:TUM12_CaXMT1_Strep-tag_annotiert.pdf‎]]
+
==== [http://partsregistry.org/wiki/index.php?title=Part:BBa_K801076 BBa_K801076] Generator BioBrick for CaXMT1 and CaMXMT1 ====
-
** CaMXMT1: [[Media:TUM12_CaMXMT1_Strep-tag_annotiert.pdf]]
+
 
-
** CaDXMT1: [[Media:TUM12_CaDXMT1_Strep-tag_annotiert.pdf]]
+
This BioBrick generates the first two enzymes envolved in caffeine biosynthesis: '''methylxanthosine N-methyltransferase 1''' and '''7- methylxanthine N-methyltransferase 1'''. It is made up of the two single generators (see above), which means that CaXMT1 is regulated by the ''Tef2'' promoter and CaMXMT1 is regulated by the ''Tef1'' promoter. In both cases, the ''Adh1'' terminator was used.
 +
</div>
 +
<div class="mfull bezel">
 +
 
 +
==== [http://partsregistry.org/wiki/index.php?title=Part:BBa_K801077 BBa_K801077] Generator BioBrick for CaXMT1, CaMXMT1 and CaDXMT1 ====
 +
 
 +
This BioBrick is the final '''"caffeine synthesis device"'''. It contains all three necessary enzymes: CaXMT1, CaMXMT1 and CaDXMT1, i.e. it is made of the three single expression cassettes for each enzyme (see also BBa_K801073, BBa_K801074 and BBa_K801075). It can be transformed directly into competent yeast cells or cloned into an adequate yeast genome integration vector.
 +
 
 +
The accuracy of this BioBrick has not yet been proven by sequencing.
 +
</div>
 +
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
 +
 
 +
===Characterization===
 +
 
 +
==== Western Blot Detection of Expressed Enzymes CaXMT1, CaMXMT1 and CaDXMT1 (BBa_K801070, BBa_K801071 and BBa_K801072) ====
 +
 
 +
We were successful in expressing all three enzymes which are necessary for the caffeine biosynthesis pathway in yeast by using yeast expression vector pTUM104. The results can be seen on the right picture. Detection was performed by using a specific antibody against ''Strep''-tag II. The Strep-tag coding sequence has been fused to each of the enzyme coding sequences.
 +
[[File:TUM12_WBs.png|500px|thumb|right| '''Fig. 5: Western Blot of protein crude extracts:''' Left: (1) CaXMT1 (uninduced);(2) CaMXMT1 (uninduced);(3) eGFP (20h);(4) CaMXMT1 (20h); Right: (1) CaDXMT1 (uninduced); (2) CaDXMT1 (20h)]]
 +
The theoretical weights of the enzymes (predicted with the online tool "ProtParam") are as follows:
 +
 
 +
* CaXMT1: 42998,4 Da
 +
* CaMXMT1: 43903,3 Da
 +
* CaDXMT1: 44473,7 Da
 +
 
 +
The real weights of the expressed enzymes are likely to be influenced by several posttranslational modifications after expression in yeast, and that is probably the reason why the detected proteins showed a higher apparent mass on the western blot. Amongst others, [http://2d.bjmu.edu.cn/show2d/Proteomics%20tools.asp '''ExPASy Proteomics tools''']  predicts the following modifications:
 +
 
 +
* acetylation at serine (second amino acid)
 +
* O-GlcNAc modifikation at several positions
 +
* phosphorylation at several positions
 +
 
 +
==== Composition of Expression Cassettes ====
 +
 
 +
In order to be able to perform a continuous expression of the three enzymes, we created several expression cassettes with individual promoters and the widely used ''Adh1'' terminator. The BioBricks BBa_K801073, BBa_K801074 and BBa_K801075 are enzyme generators, which provide continuous expression of the particular enzymes and are all part of the final '''caffeine synthesis pathway''' composite part. The choice for the respective promoters was made to support the irreversible production of caffeine, as it is ''in vivo'' in coffee plants, being assured by continuously increasing K<sub>m</sub> values of the three enzymes (H. Sano et al., 2003). Besides, we focused on prohibiting metabolic stress reactions. Thus, we used the ''Tef2'' promoter for the first enzyme CaXMT1 and the stronger ''Tef1'' promoter for the next enzyme, which is CaMXMT1, to establish high concentrations of the caffeine precursor theobromine. As soon as a certain amount of theobromine is available, the caffeine synthesis can go on. The last enzyme CaDXMT1 is then again regulated by the ''Tef2'' promoter.
 +
 
 +
The sequences of all three expression cassettes have been checked by sequencing, but expression has not yet been investigated.
 +
<br/><br/>
 +
 
 +
==== Caffeine Synthesis Pathway Composite Part BBa_K801077====
 +
[[file:TUM12_BBa_K801077.jpg|left|thumb|200px|'''Fig. 6: Gel electrophoresis of BBa_K801077 digested with Xba1 and Pst1''']]
 +
 
 +
This part is our '''final product''', made up of all '''three expression cassettes''' mentioned above. As previously said, it provides '''constitutive expression''' of all three neccessary enzymes for caffein biosynthesis. It can be cloned in a '''yeast expression vector''' or be used for '''genome integration''' by the use of appropriate vectors. An analytical restriction digest can be seen on the left.
 +
 
 +
We have been successful in the expression of the three single enzymes making up the caffeine biosynthesis metabolic pathway. Therefore, we used this composite part BBa_K801077 for expression of the enzymes, followed by '''enzymatic analyses''', in order to prove the functionality of our enzymes. After having cloned it into our vector '''pTUM100''', we performed an enzyme assay as described in [[http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003]], with the enzymes having been harvested after 20 hours. The reaction conditions were 27 °C at a pH of 8.0.
 +
 
 +
Detection of single metabolites of the caffeine biosynthesis pathway was '''performed by LC/MS analysis''', using multiple reaction monitoring (MRM). The picture below shows that we '''were in fact able''' to perform an ''in vitro'' synthesis of theobromine, which is the '''immediate precursor of caffeine'''. However, the detection of caffeine was quite difficult, because the negative control also showed the corresponding signal with an identical retention time and it is hard to say if caffeine has really been produced by our expression cassette. We assumed, that a possible reason for the failed detection could be the fact, that the concentration of available theobromine in the reaction mixture was too less. Thus, we started another experiment, in which we added theobromine directly to the isolated crude extract. However, it turned out that the used theobromine was too impure and already contained caffeine, which made it hard to draw any reliable conclusions.
 +
 
 +
 
 +
<br/>
 +
 
 +
[[File:TUM12_CaffeineChromatograms.jpg|thumb|center|900px|'''Fig. 7: LC/MS chromatograms of the first enzyme assay.''' Used substrate: Xanthosine; A: Reference chromatogram of theobromine; B: Chromatogram of a solution obtained from the enzyme assay: reaction batch was prepared as described below, with the crude extract having been isolated of yeast cells transformed with the caffeine synthesis pathway composite part; C: Chromatogram of a solution obtained from the enzyme assay: reaction batch was prepared as described below, whereas the crude extract had been isolated of yeast cells transformed with the empty vector pTUM100; Reacton conditions: T= 27°C, pH= 8.0; Reaction time: 16h; Reaction batch: 100µl reaction batch consisted of 50mM Tris/HCl (pH 8.0), 500 µM Xanthosine, 1,5 mM SAM, 200 µM MgCl2, 500 µg protein (crude extract); Reaction products were extracted with 1 ml chloroform, dried at 60°C and subjected to LC/MS analysis after having been resolved in 100µl 70% methanol; For all results, check our online labjournal on October, 24th.]]
 +
 
 +
==== Toxicity Assay ====
 +
<div>
 +
 
 +
Since high doses of caffeine (> 10 mM) have mutagenic effects on yeast ([http://www.ncbi.nlm.nih.gov/pubmed/16925551 Kuranda et al., 2006]) we investigated the effect of different caffeine concentrations on different yeast strains.
 +
The used yeast strains were the laboratory strain INVSc1, a strain which is used for brewing beer and a strain which can be purchased in a supermarket. Caffeine was added to the YPD medium in concentrations from 1 µM up to 100 mM and the growth rate was measured after a defined period of time.
 +
 
 +
We confirmed the toxic effect of caffeine on yeast at the concentration of 100 mM and the growth inhibition at the concentration of 10 mM.  Furthermore we showed the correlation between decreasing caffeine concentration and growth rate. Cells incubated with caffeine concentrations in the range of micro molar showed a similar growth rate than the negative control (incubation without caffeine). 
 +
 
 +
During our brewing experiments, we won’t exceed the level of toxicity (>10 mM) of caffeine.
 +
 
 +
 
 +
[[File:TUM12_Toxicitiy_Caffeine.png|900px|thumb|center|'''Fig. 7: Evaluation of the Toxicity Assay for Caffeine''']]
 +
 
 +
</div>
==References==
==References==
 +
<hr/>
-
* Putrament et al., On the Specificity of Caffeine Effects, MGG, 1972
+
*[[http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008]] Ashihara, H., Sano, H., and Crozier, A. (2008). Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. ''Phytochemistry'', 69(4):841–56.
-
* H. Uefuji et al., Plant Physiology, 2003, Vol. 132, pp. 372–380
+
*[[http://www.ncbi.nlm.nih.gov/pubmed/22849837 Franco et al., 2012]] Franco, L., Sánchez, C., Bravo, R., Rodriguez, A., Barriga, C., and Juánez, J. C. (2012). The sedative effects of hops (''humulus lupulus''), a component of beer, on the activity/rest rhythm. ''Acta Physiol Hung'', 99(2):133–9.
-
* H. Uefuji et al., Plant Molecular Biology, 2005, Vol. 59, p. 221–227
+
*[[http://www.ncbi.nlm.nih.gov/pubmed/18036626 Kim and Sano, 2008]] Kim, Y.-S. and Sano, H. (2008). Pathogen resistance of transgenic tobacco plants producing caffeine. ''Phytochemistry'', 69(4):882–8.
-
* H. Ashihara et al., Phytochemistry, 2008, Vol. 69, p. 841–856
+
*[[http://www.ncbi.nlm.nih.gov/pubmed/16925551 Kuranda et al., 2006]] Kuranda, K., Leberre, V., Sokol, S., Palamarczyk, G., and François, J. (2006). Investigating the caffeine effects in the yeast ''Saccharomyces cerevisiae'' brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. ''Mol Microbiol'', 61(5):1147–66.
-
* Yun-Soo Kim, Hiroshi Sano, Phytochemistry, 2008, Vol. 69, p. 882–888
+
*[[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914188/ McCarthy and McCarthy, 2007]] McCarthy, A.A., McCarthy, J.G. (2007). The Structure of Two N-Methyltransferases from the Caffeine Biosynthetic Pathway. ''Plant Physiology'', 144(2):879-889.
 +
*[[http://ci.nii.ac.jp/naid/110006323439/ Negishi et al. (1988)]] Negishi O, Ozawa T and Imagawa H (1988). N-Methyl nucleosidase from tea leaves. ''Agric. Biol. Chem.'' 52: 169–175.
 +
*[[http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003]] Uefuji, H., Ogita, S., Yamaguchi, Y., Koizumi, N., and Sano, H. (2003). Molecular cloning and functional characterization of three distinct n-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. ''Plant Physiol'', 132(1):372–80.
 +
*[[http://www.ncbi.nlm.nih.gov/pubmed/16247553 Uefuji et al., 2005]] Uefuji, H., Tatsumi, Y., Morimoto, M., Kaothien-Nakayama, P., Ogita, S., and Sano, H. (2005). Caffeine production in tobacco plants by simultaneous expression of three coffee n-methyltrasferases and its potential as a pest repellant. ''Plant Mol Biol'', 59(2):221–7.

Latest revision as of 22:21, 26 October 2012


Contents

Caffeine


Responsible: Saskia König, Roman Prechtl and Dennis Hell
Hops is not only one of the main ingredients of beer, it is also responsible for the sedative effect of beer http://www.ncbi.nlm.nih.gov/pubmed/22849837 Franco et al. 2012.

In contrast, caffeine wards off drowsiness and already enjoys great popularity as additive in a multitude of beverages. As hops is essential to the brewing process, omitting hops is not an option. This makes caffeine a desirable agent to counteract the soporific effect of beer.

We were successful in expressing (SDS-PAGE and western blot analysis) all three genes which are necessary for caffeine biosynthesis (in plants) in yeast strain INVSc1 after having cloned the genes in the new yeast expression vector pTUM104. The proof of enzyme functionality by detection of synthesized caffeine via LC-MS is already in progress. The three single genes were submitted as BioBricks [http://partsregistry.org/Part:BBa_K801070 BBa_K801870], [http://partsregistry.org/Part:BBa_K801071 BBa_K801071] and [http://partsregistry.org/Part:BBa_K801072 BBa_K801072].

Furthermore, we generated the caffeine synthesis BioBrick [http://partsregistry.org/Part:BBa_K801077 BBa_K801077], which contains all the genes necessary for caffeine synthesis - each gene with a promoter and terminator. The strength of the promoters has been chosen individually.

In order to investigate the growth of our yeast cells under the influence of caffeine at different concentrations, we also performed a toxicity assay.

Caffeine production in tobacco plants [[http://www.ncbi.nlm.nih.gov/pubmed/16247553 Uefuji et al., 2005],[http://www.ncbi.nlm.nih.gov/pubmed/18036626 Kim and Sano, 2008]] and in an in vitro assay has already been shown, but has never been performed in yeast.

Although the detection of caffeine in our performed enzyme assay turned out to be difficult, we were able to show by LC/MS analysis, that theobromine, the immediate precursor of caffeine, can in fact be synthesized out of provided Xanthosine by a crude extract derived of Saccharomyces cerevisiae cells having previously been transformed with our "caffeine synthesis Biobrick" [http://partsregistry.org/Part:BBa_K801077 BBa_K801077].

Background and Principles


Biosynthesis and Metabolic Engineering

The biosynthetic pathway of caffeine (1,3,7 Trimethylxanthine) starts with xanthosine, which is a natural component of the purine metabolism of all organisms. Necessary for its production are three distinct N-methyl transferases and one nucleosidase. However, it remains to be elucidated whether the nucleosidase reaction is catalyzed by an unspecific purine nucleoside phosphorylase (PNP) or by the first N-methyl transferase of the reaction cascade shown in the picture (Fig. 1). Being involved in the catabolism of all purine nucleosides, PNP is an essential enzyme for organisms and was shown to catalyze the removal of the ribose moiety of 7-methylxanthine in in vitro caffeine biosynthesis http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003. The in vivo synthesis of caffeine has also been shown by expression of the three N-methyl transferases in tobacco plants. Therefore, the assumption that the first methyl transferase is bifunctional and catalyzes the nucleosidase reaction is favored http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914188/ McCarthy and McCarthy, 2007. The presence of PNP or equal enzymes in plants has not yet been proven and a catalytic mechanism of the nucleosidase reaction is rather thinkable and has been explained by http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914188/ McCarthy and McCarthy, 2007. As a matter of fact, a single N-methyl nucleosidase, as it is shown on the depicted pathway below, has indeed been partially purified out of tea leaves http://ci.nii.ac.jp/naid/110006323439/ Negishi et al. (1988), but neither the native enzyme nor its DNA have ever been isolated http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008.

The enzyme caffeine synthase (last reaction step) can catalyze both the conversion of 7-methyl xanthine to theobromine and the methylation of theobromine to caffeine. Unfortunately, the affinity of this enzyme to 7-methyl xanthosine is less than one sixth of that of the other isoform CaMXMT1 http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003. To obtain the best results, we decided to express both enzymes. One can also see the Km values for the required enzymes in this paper - it shows that the substrate affinity decreases continuously towards the endpoint (caffeine), "making the reaction proceed irreversibly and stepwise" http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003.
Fig. 1: Xanthosine providing metabolic pathways


The chemical compound xanthosine is produced via at least four different routes, shown in the picture "xanthosine routes". To improve caffeine production, these pathways could be a possible target for metabolic engineering in the future.

Fig. 2: Pathway for in vivo caffeine biosynthesis in coffea arabica

During the degradation of caffeine, it is demethylated to theophylline by 7N-demethylase (main pathway). The decreased rate of this reaction is the reason for the accumulation of caffeine in the plant. Afterwards, theophylline is degraded to xanthine via 3-methylxanthine and xanthine enters the conventional purine catabolism pathway (degradation to CO2 and NH3) http://www.ncbi.nlm.nih.gov/pubmed/18068204 Ashihara et al., 2008. This catabolistic pathway is another possible target for metabolic engineering to increase the amount of caffeine.
















The Molecular and Physiological Effects of Caffeine

Fig. 3: Similar structures of caffeine and adenosine

Caffeine is a purine alkaloid and its biosynthesis occurs in coffee plants and tea plants. Its chemical structure is similar to that of the ribonucleoside adenosine. Hence, it can block specific receptors in the hypothalamus. Adenosine binding leads to decreased neurotransmitter release and therefore decreased neuron activity. This induces sleep and thus avoids overexertion of the brain. Since caffeine antagonizes adenosine and increases neuronal activity, it is used as a means to stay awake. On average, one cup (150 ml) of coffee contains about 50 - 130 mg caffeine and one cup of tea about 25 - 90 mg. At higher doses (1 g), caffeine leads to higher pulse rates and hyperactivity, but until that, the alcohol will already have done its work...

Moreover, caffeine was shown to decrease the growth of E. Coli and yeast reversibly as of a concentration of 0.1 % by acting as a mutagen (Putrament et al., On the Specificity of Caffeine Effects, MGG, 1972), but previous caffeine synthesis experiments (see below) have only led to a concentration of about 5 µg/g (per g fresh weight of tobacco leaves). Therefore, we do not expect to reach critical concentrations and the amounts of caffeine in coffee or tea (leading to physiological effects) is usually a little bit lower.

Results


BioBricks

Fig. 4: Biobricks created for caffeine synthesis

All the generated BioBricks are based on mRNA sequences that have been isolated from Coffea arabica by Hiroshi Sano et al., 2003, and registered at [http://www.ncbi.nlm.nih.gov/pubmed/ NCBI] (see numbers below). However, these sequences were modified in several ways, to make them iGEM compatible and improve the usage in general.

Modifications:

  • the 5' UTR and 3' UTR of the original sequences were removed
  • the yeast consensus sequence for improved ribosome binding (TACACA) was added 5' of the start codon ATG
  • according to the N- end rule and the yeast consensus sequence for improved ribosome binding, the first triplet after ATG (GAG) was exchanged with TCT (serine) to optimize protein stability and mRNA translation. This decision was made after analysis of the 3D- structure of the enzyme CaDXMT1. Because the first two residues of the amino acid sequence are not shown in the crystallized structure (probably because of high flexibility) we chose to exchange this amino acid. Further study (uniprot entry) showed that the first two residues of the sequence are not immediately involved in ligand binding in one of the three enzymes. Due to high similarity of the sequences of the three enzymes, we also changed this amino acid in the enzymes CaXMT1 and CaMXMT1.
  • we added a C- terminal Strep-tag for purification and detection
  • the remaining coding sequence was extended with the standard RFC10 prefix and suffix
  • we made an optimization of the coding sequences with respect to the codon usage in yeast and mRNA structures (online tool of gene-synthesis company)
  • we exchanged all critical restriction sites (RFC10 and RFC25)

All mentioned methyltransferases use SAM as methyl donor and are located in the cytoplasm of the plants. Furthermore, they exist as homodimers, being also able to form heterodimers with each other (see [http://www.brenda-enzymes.info Brenda], also for further characteristics). The temperature- and pH-optima of all three enzymes are quite similar (between 20°C - 37°C and 7,5 - 8,5). The pH-optimum is compatible with the slightly acidic environment during beer brewing.

[http://partsregistry.org/Part:BBa_K801070 BBa_K801070] RFC10 compatible BioBrick encoding the enzyme CaXMT1

NCBI access number of original gene sequence: AB048793

This RFC10 compatible BioBrick encodes the enzyme CaXMT1 (xanthosine N-methyltransferase 1 of coffea arabica). It catalyzes the first reaction step of the caffeine biosynthesis pathway.

Further information:

  • UniProt entry: Q9AVK0
  • E.C. Number: 2.1.1.158
  • PDB: 3D- Structure: [http://www.pdb.org/pdb/explore/explore.do?structureId=2eg5 C. canephora CaXMT1]
  • Part length: 1158 bp

[http://partsregistry.org/Part:BBa_K801071 BBa_K801071] RFC10 compatible BioBrick encoding the enzyme CaMXMT1

NCBI access number of original gene sequence: AB048794

This RFC10 compatible BioBrick encodes the enzyme CaMXMT1 (7-methylxanthine N-methyltransferase of coffea arabica). It catalyzes the third reaction step of caffeine biosynthesis pathway.

Further information:

  • UniProt entry: Q9AVJ9
  • E.C. Number: 2.1.1.159
  • Part length: 1176 bp

[http://partsregistry.org/Part:BBa_K801072 BBa_K801072] RFC10 compatible BioBrick encoding the enzyme CaDXMT1

NCBI access number of original gene sequence: AB084125

This RFC10 compatible BioBrick encodes the enzyme CaDXMT1 (3,7-dimethylxanthine N-methyltransferase of coffea arabica). It catalyzes the fourth reaction step of the caffeine biosynthesis, leading to caffeine.

Further information:

  • UniProt entry: Q8H0D2
  • 2.1.1.160
  • PDB: 3D- Structure: [http://www.pdb.org/pdb/explore/explore.do?structureId=2efj C. canephora CaDXMT1]
  • Part length: 1194 bp

[http://partsregistry.org/wiki/index.php?title=Part:BBa_K801073 BBa_K801073] Generator BioBrick for CaXMT1

This BioBrick generates the enzyme xanthosine N-methyltransferase 1 (CaXMT1). It is regulated by the constitutive promoter Tef2, which is a strong yeast promoter. The used terminator is Adh1, a widely used yeast terminator.

This BioBrick is also a part of the "caffeine synthesis device" (see below) and the accuracy of the sequence has been proven by sequencing.

[http://partsregistry.org/wiki/index.php?title=Part:BBa_K801074 BBa_K801074] Generator BioBrick for CaMXMT1

This BioBrick generates the enzyme 7-methylxanthine N-methyltransferase 1(CaMXMT1) (= theobromine synthase). It is regulated by the constitutive promoter Tef1, which is one of the strongest yeast promoters. The used terminator is Adh1, as it is among the other expression cassettes.

This BioBrick is also a part of the "caffeine synthesis device" (see below) and the accuracy of the sequence has been proven by sequencing.

[http://partsregistry.org/wiki/index.php?title=Part:BBa_K801075 BBa_K801075] Generator BioBrick for CaDXMT1

This BioBrick generates the enzyme 3,7-dimethylxanthine N-methyltransferase 1 (CaDXMT1) (= caffeine synthase), i.e. the last enzyme involved in caffeine biosynthesis. It is regulated by the constitutive promoter Tef2, which is also used at the expression cassette of CaXMT1. The used terminator is Adh1, as it is among the other expression cassettes.

This BioBrick is also a part of the "caffeine synthesis device" (see below) and the accuracy of the sequence has been proven by sequencing.

[http://partsregistry.org/wiki/index.php?title=Part:BBa_K801076 BBa_K801076] Generator BioBrick for CaXMT1 and CaMXMT1

This BioBrick generates the first two enzymes envolved in caffeine biosynthesis: methylxanthosine N-methyltransferase 1 and 7- methylxanthine N-methyltransferase 1. It is made up of the two single generators (see above), which means that CaXMT1 is regulated by the Tef2 promoter and CaMXMT1 is regulated by the Tef1 promoter. In both cases, the Adh1 terminator was used.

[http://partsregistry.org/wiki/index.php?title=Part:BBa_K801077 BBa_K801077] Generator BioBrick for CaXMT1, CaMXMT1 and CaDXMT1

This BioBrick is the final "caffeine synthesis device". It contains all three necessary enzymes: CaXMT1, CaMXMT1 and CaDXMT1, i.e. it is made of the three single expression cassettes for each enzyme (see also BBa_K801073, BBa_K801074 and BBa_K801075). It can be transformed directly into competent yeast cells or cloned into an adequate yeast genome integration vector.

The accuracy of this BioBrick has not yet been proven by sequencing.




























Characterization

Western Blot Detection of Expressed Enzymes CaXMT1, CaMXMT1 and CaDXMT1 (BBa_K801070, BBa_K801071 and BBa_K801072)

We were successful in expressing all three enzymes which are necessary for the caffeine biosynthesis pathway in yeast by using yeast expression vector pTUM104. The results can be seen on the right picture. Detection was performed by using a specific antibody against Strep-tag II. The Strep-tag coding sequence has been fused to each of the enzyme coding sequences.

Fig. 5: Western Blot of protein crude extracts: Left: (1) CaXMT1 (uninduced);(2) CaMXMT1 (uninduced);(3) eGFP (20h);(4) CaMXMT1 (20h); Right: (1) CaDXMT1 (uninduced); (2) CaDXMT1 (20h)

The theoretical weights of the enzymes (predicted with the online tool "ProtParam") are as follows:

  • CaXMT1: 42998,4 Da
  • CaMXMT1: 43903,3 Da
  • CaDXMT1: 44473,7 Da

The real weights of the expressed enzymes are likely to be influenced by several posttranslational modifications after expression in yeast, and that is probably the reason why the detected proteins showed a higher apparent mass on the western blot. Amongst others, [http://2d.bjmu.edu.cn/show2d/Proteomics%20tools.asp ExPASy Proteomics tools] predicts the following modifications:

  • acetylation at serine (second amino acid)
  • O-GlcNAc modifikation at several positions
  • phosphorylation at several positions

Composition of Expression Cassettes

In order to be able to perform a continuous expression of the three enzymes, we created several expression cassettes with individual promoters and the widely used Adh1 terminator. The BioBricks BBa_K801073, BBa_K801074 and BBa_K801075 are enzyme generators, which provide continuous expression of the particular enzymes and are all part of the final caffeine synthesis pathway composite part. The choice for the respective promoters was made to support the irreversible production of caffeine, as it is in vivo in coffee plants, being assured by continuously increasing Km values of the three enzymes (H. Sano et al., 2003). Besides, we focused on prohibiting metabolic stress reactions. Thus, we used the Tef2 promoter for the first enzyme CaXMT1 and the stronger Tef1 promoter for the next enzyme, which is CaMXMT1, to establish high concentrations of the caffeine precursor theobromine. As soon as a certain amount of theobromine is available, the caffeine synthesis can go on. The last enzyme CaDXMT1 is then again regulated by the Tef2 promoter.

The sequences of all three expression cassettes have been checked by sequencing, but expression has not yet been investigated.

Caffeine Synthesis Pathway Composite Part BBa_K801077

Fig. 6: Gel electrophoresis of BBa_K801077 digested with Xba1 and Pst1

This part is our final product, made up of all three expression cassettes mentioned above. As previously said, it provides constitutive expression of all three neccessary enzymes for caffein biosynthesis. It can be cloned in a yeast expression vector or be used for genome integration by the use of appropriate vectors. An analytical restriction digest can be seen on the left.

We have been successful in the expression of the three single enzymes making up the caffeine biosynthesis metabolic pathway. Therefore, we used this composite part BBa_K801077 for expression of the enzymes, followed by enzymatic analyses, in order to prove the functionality of our enzymes. After having cloned it into our vector pTUM100, we performed an enzyme assay as described in http://www.ncbi.nlm.nih.gov/pubmed/12746542 Uefuji et al., 2003, with the enzymes having been harvested after 20 hours. The reaction conditions were 27 °C at a pH of 8.0.

Detection of single metabolites of the caffeine biosynthesis pathway was performed by LC/MS analysis, using multiple reaction monitoring (MRM). The picture below shows that we were in fact able to perform an in vitro synthesis of theobromine, which is the immediate precursor of caffeine. However, the detection of caffeine was quite difficult, because the negative control also showed the corresponding signal with an identical retention time and it is hard to say if caffeine has really been produced by our expression cassette. We assumed, that a possible reason for the failed detection could be the fact, that the concentration of available theobromine in the reaction mixture was too less. Thus, we started another experiment, in which we added theobromine directly to the isolated crude extract. However, it turned out that the used theobromine was too impure and already contained caffeine, which made it hard to draw any reliable conclusions.



Fig. 7: LC/MS chromatograms of the first enzyme assay. Used substrate: Xanthosine; A: Reference chromatogram of theobromine; B: Chromatogram of a solution obtained from the enzyme assay: reaction batch was prepared as described below, with the crude extract having been isolated of yeast cells transformed with the caffeine synthesis pathway composite part; C: Chromatogram of a solution obtained from the enzyme assay: reaction batch was prepared as described below, whereas the crude extract had been isolated of yeast cells transformed with the empty vector pTUM100; Reacton conditions: T= 27°C, pH= 8.0; Reaction time: 16h; Reaction batch: 100µl reaction batch consisted of 50mM Tris/HCl (pH 8.0), 500 µM Xanthosine, 1,5 mM SAM, 200 µM MgCl2, 500 µg protein (crude extract); Reaction products were extracted with 1 ml chloroform, dried at 60°C and subjected to LC/MS analysis after having been resolved in 100µl 70% methanol; For all results, check our online labjournal on October, 24th.

Toxicity Assay

Since high doses of caffeine (> 10 mM) have mutagenic effects on yeast ([http://www.ncbi.nlm.nih.gov/pubmed/16925551 Kuranda et al., 2006]) we investigated the effect of different caffeine concentrations on different yeast strains. The used yeast strains were the laboratory strain INVSc1, a strain which is used for brewing beer and a strain which can be purchased in a supermarket. Caffeine was added to the YPD medium in concentrations from 1 µM up to 100 mM and the growth rate was measured after a defined period of time.

We confirmed the toxic effect of caffeine on yeast at the concentration of 100 mM and the growth inhibition at the concentration of 10 mM. Furthermore we showed the correlation between decreasing caffeine concentration and growth rate. Cells incubated with caffeine concentrations in the range of micro molar showed a similar growth rate than the negative control (incubation without caffeine).

During our brewing experiments, we won’t exceed the level of toxicity (>10 mM) of caffeine.


Fig. 7: Evaluation of the Toxicity Assay for Caffeine

References