Team:Cornell/testing/project

From 2012.igem.org

(Difference between revisions)
 
(56 intermediate revisions not shown)
Line 7: Line 7:
<!--<![endif]-->
<!--<![endif]-->
<div class="row main-image">
<div class="row main-image">
-
<div class="twelve columns">
+
<div class="twelve columns no-pad" style="margin-bottom:20px;">
-
<img src="https://static.igem.org/mediawiki/2012/f/fb/Dylan_being_dylan.jpg">
+
<div id="homepage-slideshow">
 +
<img src="https://static.igem.org/mediawiki/2012/1/16/WINNER.jpg" />
 +
<img src="https://static.igem.org/mediawiki/2012/3/38/ReactorDAN.jpg" />
 +
<img src="https://static.igem.org/mediawiki/2012/3/32/IMG_0052.jpg" />
 +
<img src="https://static.igem.org/mediawiki/2012/c/c6/IMG_0045_1.jpg" />
 +
</div>
</div>
</div>
</div>
</div>
-
<div class="row">
+
<div class="row" style="margin-top:20px;">
-
<div class="four columns" style="text-align:justify">
+
<div class="eight columns">
-
<h4 class="centered">Wet Lab</h4>
+
<div class="row">
-
We linked arsenic- and naphthalene-sensing systems to the electrode-reducing capability of <i>Shewanella oneidensis </i>MR-1 to synthesize an electrical reporter system. Read more about the underlying biology, as well as our approaches to molecular cloning and characterization by clicking the links below.  
+
<div class="eleven centered columns panel">
-
 
+
<h3 class="centered" style="margin:0px"> We have developed a novel biosensor intended for continuous monitoring of water quality in areas affected by oil and gas extraction.</h3>
 +
</div>
 +
</div>
 +
<div class="row" style="margin-top:20px;">
 +
<div class="twelve columns">
 +
Canadian oil sands are a vast oil reserve that, given rising prices of petroleum, are an attractive alternative to traditional sources of crude oil. However, there are numerous public health and environmental concerns regarding the oil sands extraction process. One environmental concern is the contamination of Canadian watersheds by seepage from tailings ponds. To better monitor this issue, we have engineered a novel biosensing platform with the electroactive bacterial species Shewanella oneidensis MR-1, which has the unique capability to directly transfer electrons to solid-state electrodes. We exploit this feature by genetically manipulating S. oneidensis MR-1 to upregulate its metal-reduction capacity in the presence of analyte to generate direct current output in a whole-cell biosensor. Our goal is to develop a fully autonomous electrochemical biosensor that complements the current oil sands monitoring system by providing real-time data over extended periods of time. Furthermore, our device will circumvent the costs and complications of producing and maintaining photodiode circuits used for data acquisition in bioluminescent reporter systems by instead producing a direct electrical output. While our platform is adaptable to sensing a wide range of analytes, we will initially focus on arsenic-containing compounds and naphthalene,a polycyclic aromatic hydrocarbon (PAH) – known contaminants of oil sands tailings ponds. We believe that our biosensor will be a valuable tool for remote,continuous, and long-term monitoring of pollutants in rivers and key watersheds.
 +
</div>
 +
</div>
 +
<div class="row" style="margin-top:20px;">
 +
<div class="ten columns centered">
 +
<ul>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/overview/1">What are the Oil Sands?</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/overview/2">How is oil extracted from Oil Sands?</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/overview/3">Environmental Concerns</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/overview/4">Health Effects from Water Contaminated with Arsenic
 +
and Naphthalene</a>
 +
</li>
 +
</ul>
 +
</div>
 +
</div>
</div>
</div>
-
<div class="four columns" style="text-align:justify">
 
-
<h4 class="centered">Dry Lab</h4>
 
-
We built a physical device to house our bioelectrochemical reactor and designed custom electronics to wirelessly transmit measured current to a central server. Read more about the mechanical and electrical engineering, computer science, and applied mathematics that went into our project by clicking the links below.
 
-
</div>
 
-
<div class="four columns" style="text-align:justify">
 
-
<h4 class="centered">Human Practices</h4>
 
-
We adopted a novel approach to holistically assess the impacts and risks of our project. Read more about our <b> Comprehensive Environmental Assessment</b>, as well as our other human practices applications, by clicking the links below.
 
-
</div>
 
-
</div>
 
-
<div class="row" style="margin:20px auto;">
 
<div class="four columns">
<div class="four columns">
-
<ul>
+
<div class="row">
-
<li>
+
<div class="twelve columns">
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/1">Overview</a>
+
<h4 class="centered">Wet Lab</h4>
-
</li>
+
<ul>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/2">Chassis</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/1">Overview</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/3">DNA Assembly</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/2">Chassis</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4">Testing and Results</a>
+
DNA Assembly
-
</li>
+
<ul>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/5">Future Work</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/3/1">Arsenic Reporter</a>
-
</li>
+
</li>
-
</ul>
+
<li>
-
</div>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/3/2">Salicylate Reporter</a>
-
<div class="four columns">
+
</li>
-
<ul>
+
</ul>
-
<li>
+
</li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/1">Overview</a>
+
<li>
-
</li>
+
Testing & Results
-
<li>
+
<ul>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/2">Specifications</a>
+
<li> <a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/7">Parts</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/3">Design</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/1">Reactors</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/4">Modeling</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/2">Fluorescence</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/5">Assembly</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/3">qPCR</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/6">Testing and Results</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/4">Western</a>
-
</li>
+
</li>
-
<li>
+
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/7">Future Work</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/5">Artificial River Media Growth Assays</a>
-
</li>
+
</li>
-
</ul>
+
<li>
-
</div>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/4/6">Naphthalene Growth Assays</a>
-
<div class="four columns">
+
</li>
-
<ul>
+
</ul>
-
<li>
+
</li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/economic">Comprehensive Environmental Analysis</a>
+
<li>
-
</li>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/5">Future work</a>
-
<li>
+
</li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/fracking">Application: Oil Sands</a>
+
<li>
-
</li>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/wetlab/6">Animation</a>
-
<li>
+
</li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/watershed">Application: Cayuga Watershed</a>
+
</ul>
-
</li>
+
</div>
 +
</div>
 +
<div class="row">
 +
<div class="twelve columns">
 +
<h4 class="centered">Dry Lab</h4>
 +
<ul>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/1">Overview</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/2">Specifications</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/3">Design</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/4">Modeling</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/6">Animation</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/drylab/5">Gallery</a>
 +
</li>
 +
</ul>
 +
</div>
 +
</div>
 +
<div class="row">
 +
<div class="twelve columns">
 +
<h4 class="centered">Human Practices</h4>
 +
<ul>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/1">Comprehensive Environmental Assessment</a>
 +
</li>
<li>
<li>
-
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/safety">Safety Overview</a>
+
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/5">Bioethics</a>
</li>
</li>
-
</ul>
+
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/2">Application: Oil Sands</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/3">Application: Cayuga Watershed</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Cornell/testing/project/hprac/4">Safety Overview</a>
 +
</li>
 +
</ul>
 +
</div>
 +
</div>
</div>
</div>
</div>
</div>
Line 93: Line 158:
<script type="text/javascript">
<script type="text/javascript">
$(window).load(function() {
$(window).load(function() {
 +
$('#homepage-slideshow').orbit({
 +
animation : 'horizontal-push', // fade, horizontal-slide, vertical-slide, horizontal-push
 +
animationSpeed : 800, // how fast animtions are
 +
timer : true, // true or false to have the timer
 +
resetTimerOnClick : false, // true resets the timer instead of pausing slideshow progress
 +
advanceSpeed : 8000, // if timer is enabled, time between transitions
 +
pauseOnHover : false, // if you hover pauses the slider
 +
startClockOnMouseOut : false, // if clock should start on MouseOut
 +
startClockOnMouseOutAfter : 1000, // how long after MouseOut should the timer start again
 +
directionalNav : true, // manual advancing directional navs
 +
captions : false, // do you want captions?
 +
captionAnimation : 'fade', // fade, slideOpen, none
 +
captionAnimationSpeed : 400, // if so how quickly should they animate in
 +
bullets : true, // true or false to activate the bullet navigation
 +
bulletThumbs : false, // thumbnails for the bullets
 +
bulletThumbLocation : '', // location from this file where thumbs will be
 +
afterSlideChange : function() {
 +
}, // empty function
 +
fluid : true // or set a aspect ratio for content slides (ex: '4x3')
 +
});
$('li.pg-project').addClass('active');
$('li.pg-project').addClass('active');
});
});

Latest revision as of 07:02, 17 October 2012

We have developed a novel biosensor intended for continuous monitoring of water quality in areas affected by oil and gas extraction.

Canadian oil sands are a vast oil reserve that, given rising prices of petroleum, are an attractive alternative to traditional sources of crude oil. However, there are numerous public health and environmental concerns regarding the oil sands extraction process. One environmental concern is the contamination of Canadian watersheds by seepage from tailings ponds. To better monitor this issue, we have engineered a novel biosensing platform with the electroactive bacterial species Shewanella oneidensis MR-1, which has the unique capability to directly transfer electrons to solid-state electrodes. We exploit this feature by genetically manipulating S. oneidensis MR-1 to upregulate its metal-reduction capacity in the presence of analyte to generate direct current output in a whole-cell biosensor. Our goal is to develop a fully autonomous electrochemical biosensor that complements the current oil sands monitoring system by providing real-time data over extended periods of time. Furthermore, our device will circumvent the costs and complications of producing and maintaining photodiode circuits used for data acquisition in bioluminescent reporter systems by instead producing a direct electrical output. While our platform is adaptable to sensing a wide range of analytes, we will initially focus on arsenic-containing compounds and naphthalene,a polycyclic aromatic hydrocarbon (PAH) – known contaminants of oil sands tailings ponds. We believe that our biosensor will be a valuable tool for remote,continuous, and long-term monitoring of pollutants in rivers and key watersheds.