Team:CBNU-Korea/Project/GD/Analysis

From 2012.igem.org

(Difference between revisions)
(Created page with "{{Team:CBNU-Korea/css_new}} <html> <head> <style> .PROJECT { border-bottom-color: white !important; } .MGD_Analysis { font-weight: 900; } .MGD a { font-weight: 900; color...")
 
(10 intermediate revisions not shown)
Line 24: Line 24:
url(https://static.igem.org/mediawiki/2012/3/3b/CBK_sub_img_005.png);
url(https://static.igem.org/mediawiki/2012/3/3b/CBK_sub_img_005.png);
background-size: 100% 100%;
background-size: 100% 100%;
 +
}
 +
 +
#select_img_box {
 +
overflow: auto;
 +
}
 +
 +
#CB_select {
 +
width: 95%;
 +
display: block;
 +
margin: 0 auto;
 +
margin-bottom: 1%;
 +
}
 +
 +
#CB_select2 {
 +
width: 95%;
 +
display: block;
 +
margin: 0 auto;
 +
margin-bottom: 1%;
 +
}
 +
 +
#CB_sub_chart_1 {
 +
width: 49%;
 +
height: 300px;
 +
float: left;
 +
border: 1px dotted #DFDFDF;
 +
background-size: 100% 100%;
 +
}
 +
 +
#CB_sub_chart_2 {
 +
width: 49%;
 +
height: 300px;
 +
float: right;
 +
border: 1px dotted #DFDFDF;
 +
background-size: 100% 100%;
 +
}
 +
 +
#CB_sub_chart_3 {
 +
width: 55%;
 +
height: 300px;
 +
border: 1px dotted #DFDFDF;
 +
background-size: 100% 100%;
 +
margin: 0 auto;
}
}
</style>
</style>
 +
 +
<script type="text/javascript">
 +
var before_array = [
 +
'https://static.igem.org/mediawiki/2012/4/4b/CBK_NC_017040_before.png',
 +
'https://static.igem.org/mediawiki/2012/1/12/CBK_NC_006449_before.png',
 +
'https://static.igem.org/mediawiki/2012/4/41/CBK_NC_006448_before.png',
 +
'https://static.igem.org/mediawiki/2012/e/eb/CBK_NC_011375_before.png',
 +
'https://static.igem.org/mediawiki/2012/e/e9/CBK_NC_008021_before.png',
 +
'https://static.igem.org/mediawiki/2012/d/d2/CBK_NC_007297_before.png',
 +
'https://static.igem.org/mediawiki/2012/3/38/CBK_NC_009332_before.png',
 +
'https://static.igem.org/mediawiki/2012/7/79/CBK_NC_002737_before.png',
 +
'https://static.igem.org/mediawiki/2012/f/f7/CBK_NC_008023_before.png',
 +
'https://static.igem.org/mediawiki/2012/a/ae/CBK_NC_004606_before.png',
 +
'https://static.igem.org/mediawiki/2012/1/10/CBK_NC_003485_before.png',
 +
'https://static.igem.org/mediawiki/2012/8/86/CBK_NC_007296_before.png',
 +
'https://static.igem.org/mediawiki/2012/6/64/CBK_NC_006086_before.png',
 +
'https://static.igem.org/mediawiki/2012/1/13/CBK_NC_004070_before.png',
 +
'https://static.igem.org/mediawiki/2012/f/f8/CBK_NC_008022_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/28/CBK_NC_008024_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/2f/CBK_NC_016826_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/2b/CBK_NC_012925_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/2f/CBK_NC_013928_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ac/CBK_NC_011134_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/13/CBK_NC_004350_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/34/CBK_NC_003098_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/36/CBK_NC_008533_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d6/CBK_NC_011072_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/61/CBK_NC_014251_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/be/CBK_NC_012924_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/26/CBK_NC_015600_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/6f/CBK_NC_012891_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/02/CBK_NC_012467_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/04/CBK_NC_012469_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/eb/CBK_NC_012466_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/70/CBK_NC_007432_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/8d/CBK_NC_016749_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c2/CBK_NC_014494_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/8b/CBK_NC_015558_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/ba/CBK_NC_013853_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/85/CBK_NC_004116_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/76/CBK_NC_003028_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/22/CBK_NC_012468_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/6a/CBK_NC_009785_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/08/CBK_NC_010582_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/7e/CBK_NC_004368_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/1e/CBK_NC_015760_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/4b/CBK_NC_011900_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/1c/CBK_NC_014498_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/ca/CBK_NC_010380_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/37/CBK_NC_012471_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f3/CBK_NC_013798_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9d/CBK_NC_009009_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/63/CBK_NC_015875_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/a3/CBK_NC_015433_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/93/CBK_NC_015291_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/11/CBK_NC_015215_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c0/CBK_NC_012926_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/dd/CBK_NC_012470_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/88/CBK_NC_012004_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/57/CBK_NC_009443_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/5a/CBK_NC_009442_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c9/CBK_NC_008532_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/07/CBK_FR_873482_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/4d/CBK_FR_312045_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9d/CBK_FR_312043_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/23/CBK_FR_312042_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/0e/CBK_FQ_312039_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/92/CBK_FQ_312030_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/03/CBK_FQ_312029_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d6/CBK_FQ_312027_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/a5/CBK_CP_003357_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/5c/CBK_CP_003121_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/ef/CBK_CP_003068_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/ba/CBK_CP_002904_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/14/CBK_CP_002888_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/bd/CBK_CP_002651_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/29/CBK_CP_002644_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ae/CBK_CP_002641_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b5/CBK_CP_002640_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/49/CBK_CP_002570_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/3c/CBK_CP_002465_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/e3/CBK_CP_002340_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/94/CBK_CP_002215_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/bf/CBK_CP_000837_before.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9a/CBK_AP_012053_before.png' ];
 +
 +
var after_array = [
 +
'https://static.igem.org/mediawiki/2012/f/f6/CBK_NC_017040_after.png',
 +
'https://static.igem.org/mediawiki/2012/e/ea/CBK_NC_006449_after.png',
 +
'https://static.igem.org/mediawiki/2012/3/36/CBK_NC_006448_after.png',
 +
'https://static.igem.org/mediawiki/2012/b/ba/CBK_NC_011375_after.png',
 +
'https://static.igem.org/mediawiki/2012/e/ed/CBK_NC_008021_after.png',
 +
'https://static.igem.org/mediawiki/2012/f/f5/CBK_NC_007297_after.png',
 +
'https://static.igem.org/mediawiki/2012/d/d5/CBK_NC_009332_after.png',
 +
'https://static.igem.org/mediawiki/2012/5/57/CBK_NC_002737_after.png',
 +
'https://static.igem.org/mediawiki/2012/3/37/CBK_NC_008023_after.png',
 +
'https://static.igem.org/mediawiki/2012/5/50/CBK_NC_004606_after.png',
 +
'https://static.igem.org/mediawiki/2012/a/ac/CBK_NC_003485_after.png',
 +
'https://static.igem.org/mediawiki/2012/d/d6/CBK_NC_007296_after.png',
 +
'https://static.igem.org/mediawiki/2012/9/92/CBK_NC_006086_after.png',
 +
'https://static.igem.org/mediawiki/2012/c/c3/CBK_NC_004070_after.png',
 +
'https://static.igem.org/mediawiki/2012/2/25/CBK_NC_008022_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/ba/CBK_NC_008024_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/60/CBK_NC_016826_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/ff/CBK_NC_012925_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b9/CBK_NC_013928_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/7e/CBK_NC_011134_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/2d/CBK_NC_004350_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f6/CBK_NC_003098_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/63/CBK_NC_008533_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9e/CBK_NC_011072_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/1c/CBK_NC_014251_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/a2/CBK_NC_012924_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/22/CBK_NC_015600_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/74/CBK_NC_012891_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/3b/CBK_NC_012467_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/8b/CBK_NC_012469_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/ba/CBK_NC_012466_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/1d/CBK_NC_007432_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/30/CBK_NC_016749_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/75/CBK_NC_014494_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f0/CBK_NC_015558_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d0/CBK_NC_013853_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9d/CBK_NC_004116_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/56/CBK_NC_003028_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/e1/CBK_NC_012468_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/aa/CBK_NC_009785_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/38/CBK_NC_010582_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/2b/CBK_NC_004368_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/cc/CBK_NC_015760_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/51/CBK_NC_011900_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/4a/CBK_NC_014498_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/8c/CBK_NC_010380_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/94/CBK_NC_012471_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/ec/CBK_NC_013798_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/0b/CBK_NC_009009_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/45/CBK_NC_015875_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/21/CBK_NC_015433_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/48/CBK_NC_015291_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/fc/CBK_NC_015215_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/50/CBK_NC_012926_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/18/CBK_NC_012470_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f0/CBK_NC_012004_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/fc/CBK_NC_009443_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/7b/CBK_NC_009442_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9b/CBK_NC_008532_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b7/CBK_FR_873482_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/93/CBK_FR_312045_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/5a/CBK_FR_312043_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/5c/CBK_FR_312042_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d5/CBK_FQ_312039_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/66/CBK_FQ_312030_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/de/CBK_FQ_312029_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/bc/CBK_FQ_312027_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/01/CBK_CP_003357_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f7/CBK_CP_003121_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c0/CBK_CP_003068_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ab/CBK_CP_002904_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/90/CBK_CP_002888_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ac/CBK_CP_002651_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d6/CBK_CP_002644_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/42/CBK_CP_002641_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c5/CBK_CP_002640_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9d/CBK_CP_002570_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/e6/CBK_CP_002465_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/0c/CBK_CP_002340_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/3a/CBK_CP_002215_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/1c/CBK_CP_000837_after.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/85/CBK_AP_012053_after.png' ];
 +
 +
var pic_array = [ 'https://static.igem.org/mediawiki/igem.org/8/8a/CBK_NC_017040.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9a/CBK_NC_006449.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f2/CBK_NC_006448.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/e5/CBK_NC_011375.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c7/CBK_NC_008021.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f9/CBK_NC_007297.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b0/CBK_NC_009332.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b6/CBK_NC_002737.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c4/CBK_NC_008023.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/de/CBK_NC_004606.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/ce/CBK_NC_003485.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/73/CBK_NC_007296.png',
 +
'https://static.igem.org/mediawiki/igem.org/f/f0/CBK_NC_006086.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/6c/CBK_NC_004070.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/76/CBK_NC_008022.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/0a/CBK_NC_008024.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/a9/CBK_NC_016826.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/14/CBK_NC_012925.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/20/CBK_NC_013928.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/4e/CBK_NC_011134.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/0b/CBK_NC_004350.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/39/CBK_NC_003098.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/7d/CBK_NC_008533.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ab/CBK_NC_011072.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/5c/CBK_NC_014251.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d3/CBK_NC_012924.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/e0/CBK_NC_015600.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/46/CBK_NC_012891.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ac/CBK_NC_012467.png',
 +
'https://static.igem.org/mediawiki/igem.org/c/c1/CBK_NC_012469.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9b/CBK_NC_012466.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/2a/CBK_NC_007432.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/7a/CBK_NC_016749.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/48/CBK_NC_014494.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/bf/CBK_NC_015558.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/aa/CBK_NC_013853.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/63/CBK_NC_004116.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/29/CBK_NC_003028.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/58/CBK_NC_012468.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d8/CBK_NC_009785.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/6f/CBK_NC_010582.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/9b/CBK_NC_004368.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/83/CBK_NC_015760.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/00/CBK_NC_011900.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/08/CBK_NC_014498.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/74/CBK_NC_010380.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/40/CBK_NC_012471.png',
 +
'https://static.igem.org/mediawiki/igem.org/2/27/CBK_NC_013798.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/a2/CBK_NC_009009.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/40/CBK_NC_015875.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/67/CBK_NC_015433.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/18/CBK_NC_015291.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b4/CBK_NC_015215.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/81/CBK_NC_012926.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/04/CBK_NC_012470.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/0f/CBK_NC_012004.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/4c/CBK_NC_009443.png',
 +
'https://static.igem.org/mediawiki/igem.org/b/b5/CBK_NC_009442.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d4/CBK_NC_008532.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/49/CBK_FR_873482.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/04/CBK_FQ_312045.png',
 +
'https://static.igem.org/mediawiki/igem.org/a/ac/CBK_FQ_312043.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/60/CBK_FQ_312042.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d2/CBK_FQ_312029.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/09/CBK_FQ_312030.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/d2/CBK_FQ_312029.png',
 +
'https://static.igem.org/mediawiki/igem.org/0/05/CBK_FQ_312027.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/de/CBK_CP_003357.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/59/CBK_CP_003121.png',
 +
'https://static.igem.org/mediawiki/igem.org/5/5a/CBK_CP_003068.png',
 +
'https://static.igem.org/mediawiki/igem.org/e/e6/CBK_CP_002904.png',
 +
'https://static.igem.org/mediawiki/igem.org/6/68/CBK_CP_002888.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/92/CBK_CP_002651.png',
 +
'https://static.igem.org/mediawiki/igem.org/d/dd/CBK_CP_002644.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/1d/CBK_CP_002641.png',
 +
'https://static.igem.org/mediawiki/igem.org/8/84/CBK_CP_002640.png',
 +
'https://static.igem.org/mediawiki/igem.org/7/72/CBK_CP_002570.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/31/CBK_CP_002465.png',
 +
'https://static.igem.org/mediawiki/igem.org/3/35/CBK_CP_002340.png',
 +
'https://static.igem.org/mediawiki/igem.org/4/45/CBK_CP_002215.png',
 +
'https://static.igem.org/mediawiki/igem.org/9/94/CBK_CP_000837.png',
 +
'https://static.igem.org/mediawiki/igem.org/1/19/CBK_AP_012053.png' ];
 +
 +
$(function() {
 +
$('#CB_select').change(
 +
function(event) {
 +
var i = document.getElementById("CB_select").selectedIndex;
 +
var imgSrc = before_array[i];
 +
var imgSrc2 = after_array[i];
 +
$('#CB_sub_chart_1').css("background-image",
 +
"url(" + imgSrc + ")");
 +
$('#CB_sub_chart_2').css("background-image",
 +
"url(" + imgSrc2 + ")");
 +
}).change();
 +
 +
$('#CB_select2')
 +
.change(
 +
function(event) {
 +
var i = document.getElementById("CB_select2").selectedIndex;
 +
var imgSrc = pic_array[i];
 +
$('#CB_sub_chart_3').css("background-image",
 +
"url(" + imgSrc + ")");
 +
}).change();
 +
});
 +
</script>
</head>
</head>
Line 74: Line 391:
</div>
</div>
<div id="CB_sub_menu">
<div id="CB_sub_menu">
-
<ul>
+
<div id="CB_sub_mobile_menu">+ MENU</div>
 +
<ul class="CB_ul">
<li class="OVERVIEW"><a
<li class="OVERVIEW"><a
href="https://2012.igem.org/Team:CBNU-Korea/Project">01 +
href="https://2012.igem.org/Team:CBNU-Korea/Project">01 +
Line 82: Line 400:
+ Brick Designer</a></li>
+ Brick Designer</a></li>
<li class="MGD"><a href="#">03 + Minimal Genome Designer</a></li>
<li class="MGD"><a href="#">03 + Minimal Genome Designer</a></li>
-
<li id="li_sub" class="MGD_Overview"><a href="#">-
+
<li id="li_sub" class="MGD_Overview"><a
 +
href="https://2012.igem.org/Team:CBNU-Korea/Project/GD/Overview">-
Overview</a></li>
Overview</a></li>
<li id="li_sub" class="MGD_Method"><a
<li id="li_sub" class="MGD_Method"><a
href="https://2012.igem.org/Team:CBNU-Korea/Project/GD/Method">-
href="https://2012.igem.org/Team:CBNU-Korea/Project/GD/Method">-
Method</a></li>
Method</a></li>
-
<li id="li_sub" class="MGD_Analysis"><a
+
<li id="li_sub" class="MGD_Analysis"><a href="#">-
-
href="https://2012.igem.org/Team:CBNU-Korea/Project/GD/Analysis">-
+
Analysis</a></li>
Analysis</a></li>
<li class="DOWNLOAD"><a
<li class="DOWNLOAD"><a
Line 105: Line 423:
</div>
</div>
<div id="CB_sub_cont">
<div id="CB_sub_cont">
-
<h1>1. Overview</h1>
+
<h1>1. Introduction</h1>
-
<h2>1-1. Predicting Essential Genes</h2>
+
<h2>1-1. Suggestion</h2>
 +
 
 +
<p>Since the Genome project started in 2002, we can easily get
 +
the genetic information of many species. Also as the scientific
 +
technique developed, we can insert and compose the genome. If we
 +
can design a whole genome, then we will be able to make a one and
 +
only useful genome. But as today, the compose of the minimum
 +
genome made with the essential gene has succeeded, but did not
 +
last.</p>
 +
<h2>1-2. Object</h2>
 +
<p>To design a genome, we have to analyze the pattern of the
 +
genome and the distribution of the gene.</p>
 +
 
 +
<h2>1-3. Method and the range of the study</h2>
<p>
<p>
-
<strong>1) Need of the Analysis of Essential Genes</strong>
+
The study was used information of species in streptococcus by
 +
patric database (<a
 +
href="http://www.patricbrc.org/portal/portal/patric/Home">
 +
http://www.patricbrc.org/portal/portal/patric/Home</a>) and SynbUID.<br>
 +
The Data was built by mysql 5.5.27, and a statistical analysis
 +
program was used by SAS 9.3.
</p>
</p>
-
<p>It is thought that today, Synthetic Biology has reached a
+
<div id="scrolltotop"></div>
-
plateau. Since the success of the experiment that re-synthesizes
+
 
-
the genome and insert it into the cell, it seems that Synthetic
+
<h1>2. Design</h1>
-
Biology is not developing. But if somebody can design a genome and
+
<h2>2-1. Prepare</h2>
-
synthesize it, synthetic biology can take off again. Then what do
+
-
we need to design a genome? First, we need information about
+
-
essential genes. An essential gene is a gene that is critical for
+
-
survival. If you have the information about the essential gene,
+
-
you are in a superior state in making human artificial cell in a
+
-
true sense. Because it means that you already have the ability to
+
-
make the brick. All you have to do is make a brick with our
+
-
program developed for you according to the sequence of the
+
-
essential genes, and conduct experiments.</p>
+
<p>
<p>
-
<strong>2) The Present of the Analysis of Essential Genes</strong>
+
<strong>1) Build database</strong>
</p>
</p>
-
<p>Essential genes are being analyzed in many places, such as
 
-
in DEG or PATRIC.</p>
 
-
<img src="https://static.igem.org/mediawiki/2012/1/11/CBK_B_001.png">
 
<p>
<p>
-
<strong>3) The Problem of the Analysis of Essential Genes</strong>
+
An attribute of Genome name is consisted of ID, Genome_name, COG,
 +
Start, End, Strand, and Size.<br> An attribute of Annotation
 +
Table_EG is consisted of ID, locus, and SynbUID. Two entities are
 +
paired of Locus_tag 1 by 1.
</p>
</p>
-
<p>Essential genes known today are mostly discovered with in
+
<img src="https://static.igem.org/mediawiki/igem.org/7/76/CBK_C_001.png">
-
vitro experiments. As seen in the chart above, the result of the
+
-
experiment can vary according to conditions and methods. We bring
+
-
forth a problem about this. We believe that to give meaning to a
+
-
result, it has to be accurate. Also the analysis method of
+
-
essential genes used today takes a lot of time and labor. To
+
-
address this we use a bio-informatics way and find essential
+
-
genes.</p>
+
-
<h2>1-2. Analysis of Essential Genes</h2>
 
<p>
<p>
-
<strong>1) Definition of Essential Genes</strong>
+
<strong>2) Represented sample number</strong>
</p>
</p>
-
<p>As we are using the computer to find essential genes, we
+
<p>For checking the number of specimen that is representative,
-
can't use the existing method to analogize essential genes with
+
we used a simple random sampling method, and assumed that the
-
experiments. We assume that if essential genes are critical to
+
complete genome is random. We used the significance level (a=0.05)
-
living, every organism must have it. So we approached the problem
+
and the limit of error (b=0.1). The total species of streptococcus
-
with the assumption that an essential gene is a gene that every
+
is 494 species, and between these, 82 species are completed.
-
living thing will has.</p>
+
According to our calculation, when there is 81 species, the result
 +
is satisfied. Therefore, as a result, 82 complete species
 +
represent the streptococcus.</p>
 +
<img src="https://static.igem.org/mediawiki/igem.org/9/9a/CBK_C_002.png">
 +
 
<p>
<p>
-
<strong>2) Significance of the Analysis of Essential
+
<strong>3) Standard</strong>
-
Genes</strong>
+
</p>
</p>
-
<p>We are proud of our analysis methods. You will see that our
 
-
analysis result is not that different from that proved with
 
-
experiments. Our analysis results do more than finding essential
 
-
genes. With this, you can understand the metabolic process and
 
-
furthermore have a good chance to synthesize an artificial cell.</p>
 
-
<h2>1-3. Developing of the Minimal Genome Designer</h2>
+
<p>3-1) Divided the interval of the genome</p>
 +
<p>The number and size of the genome differs between species.
 +
To supplement this problem, we divided the genes in a section to
 +
show the genome’s size as a proportion. As a result, when we
 +
divided the analyzing section less then a hundred, it was hard to
 +
see the patterns because the data has been diluted. And when we
 +
divided it into more then a hundred pieces, it was not that
 +
different from the result that divided it into a hundred pieces.
 +
So we decided to divide it into a hundred pieces.</p>
 +
 
 +
<p>3-2) Identified the starting point</p>
 +
<p>The number one ORF of each gene sequence analysis data is
 +
different between every species. Thus we had to make a specific
 +
standard to equalize the beginning of the data. We checked the
 +
strand pattern of each genome and identified it with the strands.
 +
</p>
 +
 
 +
<div id="select_img_box">
 +
<select id="CB_select">
 +
<option>Streptococcus pyogenes MGAS15252</option>
 +
<option>Streptococcus thermophilus CNRZ1066</option>
 +
<option>Streptococcus thermophilus LMG 18311</option>
 +
<option>Streptococcus pyogenes NZ131</option>
 +
<option>Streptococcus pyogenes MGAS9429</option>
 +
<option>Streptococcus pyogenes MGAS5005</option>
 +
<option>Streptococcus pyogenes str. Manfredo</option>
 +
<option>Streptococcus pyogenes M1 GAS</option>
 +
<option>Streptococcus pyogenes MGAS2096</option>
 +
<option>Streptococcus pyogenes SSI-1</option>
 +
<option>Streptococcus pyogenes MGAS8232</option>
 +
<option>Streptococcus pyogenes MGAS6180</option>
 +
<option>Streptococcus pyogenes MGAS10394</option>
 +
<option>Streptococcus pyogenes MGAS315</option>
 +
<option>Streptococcus pyogenes MGAS10270</option>
 +
<option>Streptococcus pyogenes MGAS10750</option>
 +
<option>Streptococcus infantarius subsp. infantarius
 +
CJ18</option>
 +
<option>Streptococcus suis P1/7</option>
 +
<option>Streptococcus mutans NN2025</option>
 +
<option>Streptococcus equi subsp. zooepidemicus
 +
MGCS10565</option>
 +
<option>Streptococcus mutans UA159</option>
 +
<option>Streptococcus pneumoniae R6</option>
 +
<option>Streptococcus pneumoniae D39</option>
 +
<option>Streptococcus pneumoniae G54</option>
 +
<option>Streptococcus pneumoniae TCH8431/19A</option>
 +
<option>Streptococcus suis SC84</option>
 +
<option>Streptococcus pasteurianus ATCC 43144</option>
 +
<option>Streptococcus dysgalactiae subsp. equisimilis
 +
GGS_124</option>
 +
<option>Streptococcus pneumoniae P1031</option>
 +
<option>Streptococcus pneumoniae Taiwan19F-14</option>
 +
<option>Streptococcus pneumoniae JJA</option>
 +
<option>Streptococcus agalactiae A909</option>
 +
<option>Streptococcus macedonicus ACA-DC 198</option>
 +
<option>Streptococcus pneumoniae AP200</option>
 +
<option>Streptococcus parauberis KCTC 11537</option>
 +
<option>Streptococcus mitis B6</option>
 +
<option>Streptococcus agalactiae 2603V/R</option>
 +
<option>Streptococcus pneumoniae TIGR4</option>
 +
<option>Streptococcus pneumoniae 70585</option>
 +
<option>Streptococcus gordonii str. Challis substr. CH1</option>
 +
<option>Streptococcus pneumoniae CGSP14</option>
 +
<option>Streptococcus agalactiae NEM316</option>
 +
<option>Streptococcus salivarius CCHSS3</option>
 +
<option>Streptococcus pneumoniae ATCC 700669</option>
 +
<option>Streptococcus pneumoniae 670-6B</option>
 +
<option>Streptococcus pneumoniae Hungary19A-6</option>
 +
<option>Streptococcus equi subsp. equi 4047</option>
 +
<option>Streptococcus gallolyticus UCN34</option>
 +
<option>Streptococcus sanguinis SK36</option>
 +
<option>Streptococcus pseudopneumoniae IS7493</option>
 +
<option>Streptococcus suis ST3</option>
 +
<option>Streptococcus oralis Uo5</option>
 +
<option>Streptococcus gallolyticus subsp. gallolyticus
 +
ATCC BAA-2069</option>
 +
<option>Streptococcus suis BM407</option>
 +
<option>Streptococcus equi subsp. zooepidemicus</option>
 +
<option>Streptococcus uberis 0140J</option>
 +
<option>Streptococcus suis 98HAH33</option>
 +
<option>Streptococcus suis 05ZYH33</option>
 +
<option>Streptococcus thermophilus LMD-9</option>
 +
<option>ccus salivarius JIM8777</option>
 +
<option>s pneumoniae SPN034156 draft genome</option>
 +
<option>Streptococcus pneumoniae SPN034183 draft genome</option>
 +
<option>Streptococcus pneumoniae SPN033038 draft genome</option>
 +
<option>Streptococcus pneumoniae SPN032672 draft genome</option>
 +
<option>Streptococcus pneumoniae INV104 genome</option>
 +
<option>Streptococcus pneumoniae INV200 genome</option>
 +
<option>Streptococcus pneumoniae OXC141 genome</option>
 +
<option>Streptococcus pneumoniae ST556</option>
 +
<option>Streptococcus pyogenes MGAS1882</option>
 +
<option>Streptococcus pyogenes Alab49</option>
 +
<option>Streptococcus equi subsp. zooepidemicus ATCC
 +
35246</option>
 +
<option>Streptococcus salivarius 57.I</option>
 +
<option>Streptococcus suis ST1</option>
 +
<option>Streptococcus suis D12</option>
 +
<option>Streptococcus suis D9</option>
 +
<option>Streptococcus suis SS12</option>
 +
<option>Streptococcus suis A7</option>
 +
<option>Streptococcus suis JS14</option>
 +
<option>Streptococcus thermophilus ND03</option>
 +
<option>Streptococcus dysgalactiae subsp. equisimilis
 +
ATCC 12394</option>
 +
<option>Streptococcus suis GZ1</option>
 +
<option>Streptococcus gallolyticus subsp. gallolyticus
 +
ATCC 43143 DNA</option>
 +
</select>
 +
 
 +
<div id="CB_sub_chart_1"></div>
 +
<div id="CB_sub_chart_2"></div>
 +
</div>
 +
<h2>2-2. Analysis</h2>
<p>
<p>
-
<strong>1) The Purpose of Minimal Genome Designer</strong>
+
<strong>1) Strand</strong>
</p>
</p>
-
<p>The purpose of our program is fundamentally to understand
+
<p>- We chose 77 species out of 82 species randomly, and
-
the structure and the principle of the genome. However, we will
+
estimated the patterns of the strand ratio of each sections, and
-
not stop at understanding the information about genome, but hope
+
verified the estimated number with the other 5 species.</p>
-
that you can go on to build your own genome by using the brick in
+
<p>- We checked the strand ratio of the essential gene.</p>
-
your experiment.</p>
+
 
<p>
<p>
-
<strong>2) Advantages of Minimal Genome Designer</strong>
+
<strong>2) Region</strong>
 +
</p>
 +
<p>- We found the COG and the frequency of the essential gene
 +
because of referred to the genome design</p>
 +
<p>
 +
2-1) We checked where the essential genome is distributed.<br>2-2)
 +
We checked where the gene by being provided COG is distributed.
</p>
</p>
-
<p>Minimal Genome Designer will make you easily understand the
 
-
genome, by showing you the structure. Providing various
 
-
information about the gene and the genome, our program will
 
-
shorten your time to design the experiment. This also means that
 
-
you can save money as well. We have tried and verified so that
 
-
Minimal Genome Designer can procure reliability. The results made
 
-
by Minimal Genome Designer can be used as a new background
 
-
information for your experiment.</p>
 
-
<div id="scrolltotop"></div>
 
-
<h1>2. Function</h1>
 
-
<h2>2-1. Viewer</h2>
 
-
<p>1) The program is installed and run in a local computer. The
+
<h1>3. Result</h1>
-
local database isn't included in the program, and to see the
+
<h2>2-1. Strand</h2>
-
database you should have access to the server that we constructed.
+
 
 +
<p>When we checked the strand pattern of the 82 species, the
 +
genes were distributed in 4 places with different tendency. So we
 +
decided the section of the proc transreg as 4, and analyzed.</p>
 +
 
 +
 
 +
 
 +
<div id="select_img_box">
 +
<select id="CB_select2">
 +
<option>Streptococcus pyogenes MGAS15252</option>
 +
<option>Streptococcus thermophilus CNRZ1066</option>
 +
<option>Streptococcus thermophilus LMG 18311</option>
 +
<option>Streptococcus pyogenes NZ131</option>
 +
<option>Streptococcus pyogenes MGAS9429</option>
 +
<option>Streptococcus pyogenes MGAS5005</option>
 +
<option>Streptococcus pyogenes str. Manfredo</option>
 +
<option>Streptococcus pyogenes M1 GAS</option>
 +
<option>Streptococcus pyogenes MGAS2096</option>
 +
<option>Streptococcus pyogenes SSI-1</option>
 +
<option>Streptococcus pyogenes MGAS8232</option>
 +
<option>Streptococcus pyogenes MGAS6180</option>
 +
<option>Streptococcus pyogenes MGAS10394</option>
 +
<option>Streptococcus pyogenes MGAS315</option>
 +
<option>Streptococcus pyogenes MGAS10270</option>
 +
<option>Streptococcus pyogenes MGAS10750</option>
 +
<option>Streptococcus infantarius subsp. infantarius
 +
CJ18</option>
 +
<option>Streptococcus suis P1/7</option>
 +
<option>Streptococcus mutans NN2025</option>
 +
<option>Streptococcus equi subsp. zooepidemicus
 +
MGCS10565</option>
 +
<option>Streptococcus mutans UA159</option>
 +
<option>Streptococcus pneumoniae R6</option>
 +
<option>Streptococcus pneumoniae D39</option>
 +
<option>Streptococcus pneumoniae G54</option>
 +
<option>Streptococcus pneumoniae TCH8431/19A</option>
 +
<option>Streptococcus suis SC84</option>
 +
<option>Streptococcus pasteurianus ATCC 43144</option>
 +
<option>Streptococcus dysgalactiae subsp. equisimilis
 +
GGS_124</option>
 +
<option>Streptococcus pneumoniae P1031</option>
 +
<option>Streptococcus pneumoniae Taiwan19F-14</option>
 +
<option>Streptococcus pneumoniae JJA</option>
 +
<option>Streptococcus agalactiae A909</option>
 +
<option>Streptococcus macedonicus ACA-DC 198</option>
 +
<option>Streptococcus pneumoniae AP200</option>
 +
<option>Streptococcus parauberis KCTC 11537</option>
 +
<option>Streptococcus mitis B6</option>
 +
<option>Streptococcus agalactiae 2603V/R</option>
 +
<option>Streptococcus pneumoniae TIGR4</option>
 +
<option>Streptococcus pneumoniae 70585</option>
 +
<option>Streptococcus gordonii str. Challis substr. CH1</option>
 +
<option>Streptococcus pneumoniae CGSP14</option>
 +
<option>Streptococcus agalactiae NEM316</option>
 +
<option>Streptococcus salivarius CCHSS3</option>
 +
<option>Streptococcus pneumoniae ATCC 700669</option>
 +
<option>Streptococcus pneumoniae 670-6B</option>
 +
<option>Streptococcus pneumoniae Hungary19A-6</option>
 +
<option>Streptococcus equi subsp. equi 4047</option>
 +
<option>Streptococcus gallolyticus UCN34</option>
 +
<option>Streptococcus sanguinis SK36</option>
 +
<option>Streptococcus pseudopneumoniae IS7493</option>
 +
<option>Streptococcus suis ST3</option>
 +
<option>Streptococcus oralis Uo5</option>
 +
<option>Streptococcus gallolyticus subsp. gallolyticus
 +
ATCC BAA-2069</option>
 +
<option>Streptococcus suis BM407</option>
 +
<option>Streptococcus equi subsp. zooepidemicus</option>
 +
<option>Streptococcus uberis 0140J</option>
 +
<option>Streptococcus suis 98HAH33</option>
 +
<option>Streptococcus suis 05ZYH33</option>
 +
<option>Streptococcus thermophilus LMD-9</option>
 +
<option>ccus salivarius JIM8777</option>
 +
<option>s pneumoniae SPN034156 draft genome</option>
 +
<option>Streptococcus pneumoniae SPN034183 draft genome</option>
 +
<option>Streptococcus pneumoniae SPN033038 draft genome</option>
 +
<option>Streptococcus pneumoniae SPN032672 draft genome</option>
 +
<option>Streptococcus pneumoniae INV104 genome</option>
 +
<option>Streptococcus pneumoniae INV200 genome</option>
 +
<option>Streptococcus pneumoniae OXC141 genome</option>
 +
<option>Streptococcus pneumoniae ST556</option>
 +
<option>Streptococcus pyogenes MGAS1882</option>
 +
<option>Streptococcus pyogenes Alab49</option>
 +
<option>Streptococcus equi subsp. zooepidemicus ATCC
 +
35246</option>
 +
<option>Streptococcus salivarius 57.I</option>
 +
<option>Streptococcus suis ST1</option>
 +
<option>Streptococcus suis D12</option>
 +
<option>Streptococcus suis D9</option>
 +
<option>Streptococcus suis SS12</option>
 +
<option>Streptococcus suis A7</option>
 +
<option>Streptococcus suis JS14</option>
 +
<option>Streptococcus thermophilus ND03</option>
 +
<option>Streptococcus dysgalactiae subsp. equisimilis
 +
ATCC 12394</option>
 +
<option>Streptococcus suis GZ1</option>
 +
<option>Streptococcus gallolyticus subsp. gallolyticus
 +
ATCC 43143 DNA</option>
 +
</select>
 +
 
 +
<div id="CB_sub_chart_3"></div>
 +
</div>
 +
 
 +
 
 +
 
 +
<p>
 +
<strong>1) Estimated the transpose linear regression</strong>
</p>
</p>
-
<p>2) The program consists of the circular viewer on the upper
+
<p>We explained with a theory that ‘The null hypothesis does
-
left, and the linear viewer below, and a Genome list on the right.</p>
+
not satisfy the regression model, but the alternative hypothesis
-
<p>3) First, select a gene in the Genome List on the right. You
+
does.’ As a result in the SAS, according to the null hypothesis,
-
may select it on the Tree View, or by searching the gene that you
+
the F-value was 3093.13, and the P=value <.0001. Therefore at a
-
want. After selection, the information of the gene will be shown
+
significance level of 0.01, the null hypothesis is dismissible. In
-
in graphic. You can see more information about the relevant gene
+
other words, the regression model is more suitable.</p>
-
and the genome on the Genome Information in the middle.</p>
+
<img src="https://static.igem.org/mediawiki/igem.org/5/5f/CBK_C_003.png">
-
<p>4) If you move the reading glass image of the circular
+
-
viewer, you can see the relevant location in linear graphic. By
+
-
using the linear scroll bar, you can change the linear location.
+
-
If you click the relevant square image in the linear viewer, you
+
-
can see more information about the gene(Like sequences, length,
+
-
location, Synb_id, function, product and more).</p>
+
-
<p>5) With the check box on the lower right-hand corner of the
+
-
circular viewer, you can check the gene of your choice.</p>
+
-
<p>6) By checking the By COG check box, you can see each of the
+
-
COG functions of each gene. Choose the COG function in the scroll
+
-
box that appears after you check, then you can see the genes
+
-
including that function.</p>
+
-
<p>7) If you check the DEG Only check box, you can see the
+
-
informations that DEG has found in vitro in visual.</p>
+
-
<p>8) If you check the EG Only check box, you can see the
+
-
information on essential genes that we gain through analysis in
+
-
visual.</p>
+
-
<p>9) Select 'History' in the Genome List menu, then you can
+
-
see all the genes that have seen all along easily.</p>
+
-
<h2>2-2. Unique Genome Designer</h2>
+
<p>
 +
<strong>2) Estimated factor &#946;0, &#946;1</strong>
 +
</p>
-
<p>1) Shows the information of essential genes that can exist
+
<img src="https://static.igem.org/mediawiki/igem.org/0/01/CBK_C_004.png">
-
in each section.(Function, Product, COG number etc.)</p>
+
 
-
<p>2) Shows the frequency of the essential genes in each
+
<p>As the notable probability gets smaller, it can affect the
-
section that are analyzed using 82 different species.</p>
+
dependent variable more. According to the null hypothesis, the
-
<p>3) Shows the frequency of the COG of each section that is
+
F-value of &#946;0 is 10.13, and the Pr > F 0.0015. So the null
-
analyzed using 82 different species.</p>
+
hypothesis is dismissable. And the estimated calculation is
-
<p>4) By choosing each section of 20 in the screen, the
+
1.22744031. Also F-value of &#946;1 was 3093.13, and the Pr > F
-
essential genes that can be inserted in the relevant area will be
+
<.0001, so again the null hypothesis is dismissed. Therefore, the
-
listed.</p>
+
estimated number is 0.97546498.</p>
-
<p>5) The user can put the wanted essential gene In each
+
 
-
section and see the processing situation. When the whole 478
+
<p>
-
essential genes are put in all sections, the design is completed.
+
<strong>3) Estimated the transe regression model</strong>
</p>
</p>
-
<p>7) The user can save and import the designing situation as a
 
-
XML form at their convenience.</p>
 
-
<p>8) When the user complete the design, the designed minimal
 
-
genome can be saved as a XML form and it could be viewed at
 
-
Viewer.</p>
 
-
<div id="scrolltotop"></div>
 
-
<h1>3. Future Work</h1>
 
<p>
<p>
-
Our ultimate objective is to make a program that can build a
+
As a result to look the distribution of the strand to each
-
complete minimum genome. Well do we know the information that we
+
species, we found a similar pattern. Thus we studied the pattern
-
need to realize our goal. First, we analogize essential genes that
+
of the strand distribution after to range a standard by section
-
every species is supposed to have. And we are aware of the fact
+
which is changed the strand's sign. By using The Transpose
-
that to achieve this goal, our analysis method needs higher
+
Regression Method, we have a result to be able to express The
-
reliability. Therefore, we are going to use the same method on a
+
Spline Regression Model by the distribution pattern of the strand
-
different genus (For example, like Mycoplasma, Salmonella, that
+
of 82 species. <br> <br>Identity(spercent) = 1.22744031
-
the essential gene is already identified experimentally), and
+
+ 0.97546498*spline(interval)
-
secure the reliability of our analysis method. Secondly, we
+
 
-
presume specific genes which reflect the characteristic of genome.
+
</p>
-
We think that there are genes that the function of it can
+
 
-
represent each genome or each level. In this year we only analyzed
+
 
-
every genome in Streptococcus, so we cannot provide information of
+
<img src="https://static.igem.org/mediawiki/igem.org/d/d2/CBK_C_005.png">
-
specific genes. But we expect that the specific genes that we
+
 
-
analyzed in this year not only make our software more wealthy but
+
<p>The X axis shows the 100 sections of the genome of the
-
also make accurate result. Thirdly, we presume accurate
+
randomly selected 77 species. And the Y axis is the ratio of the +
-
arrangement of essential gene that we analyzed. Because we mostly
+
patterns of each section. The sum of each section’s +, - pattern
-
concentrated on the analysis of strand pattern, it isn’t enough to
+
is 100. According to the graph above, when the standard number is
-
provide accurate arrangement. However we know that we need the
+
50, the + patterns appears as 25 on the left, and the – pattern on
-
information of the order of genes to make complete design
+
the right higher than 80. So in this case, it is a + pattern.</p>
-
software. Thus we are going to analyze this and improve the
+
 
-
completeness of our Designer.<br> We believe that if this
+
<p>
-
analysis becomes perfect, our analysis method will secure
+
<strong>4) Verifying the estimated Prediction Equation is
-
reliability and give you the accurate outcome. Also hoping that
+
adequate.</strong>
-
you will use our program more actively, we are planning to provide
+
</p>
-
information you will need(For example, restriction enzyme sites,
+
 
-
Gene map, the culture conditions of different species). We hope
+
<img src="https://static.igem.org/mediawiki/igem.org/d/df/CBK_C_006.png">
-
our program Minimal Genome Designer will provide the fundamental
+
<p>By conducting the chi-square test with the estimated
-
information for your experiment in the near future.
+
transpose linear regression prediction equation with the 77
 +
randomly selected species, we verified if the equation is
 +
adequate. The null hypothesis is independent from the prediction
 +
equation and the other 5 species that was not selected. And the
 +
alternative hypothesis is subordinate with the prediction equation
 +
and the 5 species. The p-value of the 5 species is independent
 +
from the prediction equation estimated by the null hypothesis. We
 +
can see that it is subordinate when it is dismissed.</p>
 +
 
 +
<h2>2-2. Region</h2>
 +
 
 +
 
 +
<p>We estimated the origin which is a part of changed strand’s
 +
pattern.</p>
 +
<p>
 +
<strong>1) The spread of the essential genes is shown at
 +
the table below.</strong>
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/igem.org/3/33/CBK_C_007.png"> <img
 +
src="https://static.igem.org/mediawiki/igem.org/b/ba/CBK_C_008.png">
 +
 
 +
<p>The X axis shows the 20 sections of the genome size. And the
 +
Y axis is the frequency of the genome. As a result to guess the
 +
distribution of the essential gene, the graph is showed like that.
 +
We know that 322 essential genes among 485 essential gene are
 +
distributed a bilateral symmetry in the middle of origin. We can
 +
divide between the Synb_ID which is the origin of high frequency
 +
and Synb_ID which is the origin of high frequency by both sides.</p>
 +
 
 +
<p>
 +
<strong>2) The spread of the genes provided COG is shown
 +
at the table below.</strong>
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/igem.org/1/15/CBK_C_009.png"> <img
 +
src="https://static.igem.org/mediawiki/igem.org/5/57/CBK_C_010.png"> <img
 +
src="https://static.igem.org/mediawiki/igem.org/7/74/CBK_C_011.png"> <img
 +
src="https://static.igem.org/mediawiki/igem.org/b/b2/CBK_C_012.png">
 +
<p>
 +
The X axis shows the 20 sections of the genome size. And the Y
 +
axis is the frequency of the gene provided the COG.<br> As a
 +
result to guess the distribution of gene by being provided COG,
 +
the graph provide an information that the COG is distributed
 +
symmetrically around the middle of origin.
</p>
</p>
-
<div id="scrolltotop"></div>
 
</div>
</div>
</div>
</div>

Latest revision as of 00:48, 27 September 2012

Minimal Genome Designer

- Analysis

1. Introduction

1-1. Suggestion

Since the Genome project started in 2002, we can easily get the genetic information of many species. Also as the scientific technique developed, we can insert and compose the genome. If we can design a whole genome, then we will be able to make a one and only useful genome. But as today, the compose of the minimum genome made with the essential gene has succeeded, but did not last.

1-2. Object

To design a genome, we have to analyze the pattern of the genome and the distribution of the gene.

1-3. Method and the range of the study

The study was used information of species in streptococcus by patric database ( http://www.patricbrc.org/portal/portal/patric/Home) and SynbUID.
The Data was built by mysql 5.5.27, and a statistical analysis program was used by SAS 9.3.

2. Design

2-1. Prepare

1) Build database

An attribute of Genome name is consisted of ID, Genome_name, COG, Start, End, Strand, and Size.
An attribute of Annotation Table_EG is consisted of ID, locus, and SynbUID. Two entities are paired of Locus_tag 1 by 1.

2) Represented sample number

For checking the number of specimen that is representative, we used a simple random sampling method, and assumed that the complete genome is random. We used the significance level (a=0.05) and the limit of error (b=0.1). The total species of streptococcus is 494 species, and between these, 82 species are completed. According to our calculation, when there is 81 species, the result is satisfied. Therefore, as a result, 82 complete species represent the streptococcus.

3) Standard

3-1) Divided the interval of the genome

The number and size of the genome differs between species. To supplement this problem, we divided the genes in a section to show the genome’s size as a proportion. As a result, when we divided the analyzing section less then a hundred, it was hard to see the patterns because the data has been diluted. And when we divided it into more then a hundred pieces, it was not that different from the result that divided it into a hundred pieces. So we decided to divide it into a hundred pieces.

3-2) Identified the starting point

The number one ORF of each gene sequence analysis data is different between every species. Thus we had to make a specific standard to equalize the beginning of the data. We checked the strand pattern of each genome and identified it with the strands.

2-2. Analysis

1) Strand

- We chose 77 species out of 82 species randomly, and estimated the patterns of the strand ratio of each sections, and verified the estimated number with the other 5 species.

- We checked the strand ratio of the essential gene.

2) Region

- We found the COG and the frequency of the essential gene because of referred to the genome design

2-1) We checked where the essential genome is distributed.
2-2) We checked where the gene by being provided COG is distributed.

3. Result

2-1. Strand

When we checked the strand pattern of the 82 species, the genes were distributed in 4 places with different tendency. So we decided the section of the proc transreg as 4, and analyzed.

1) Estimated the transpose linear regression

We explained with a theory that ‘The null hypothesis does not satisfy the regression model, but the alternative hypothesis does.’ As a result in the SAS, according to the null hypothesis, the F-value was 3093.13, and the P=value <.0001. Therefore at a significance level of 0.01, the null hypothesis is dismissible. In other words, the regression model is more suitable.

2) Estimated factor β0, β1

As the notable probability gets smaller, it can affect the dependent variable more. According to the null hypothesis, the F-value of β0 is 10.13, and the Pr > F 0.0015. So the null hypothesis is dismissable. And the estimated calculation is 1.22744031. Also F-value of β1 was 3093.13, and the Pr > F <.0001, so again the null hypothesis is dismissed. Therefore, the estimated number is 0.97546498.

3) Estimated the transe regression model

As a result to look the distribution of the strand to each species, we found a similar pattern. Thus we studied the pattern of the strand distribution after to range a standard by section which is changed the strand's sign. By using The Transpose Regression Method, we have a result to be able to express The Spline Regression Model by the distribution pattern of the strand of 82 species.

Identity(spercent) = 1.22744031 + 0.97546498*spline(interval)

The X axis shows the 100 sections of the genome of the randomly selected 77 species. And the Y axis is the ratio of the + patterns of each section. The sum of each section’s +, - pattern is 100. According to the graph above, when the standard number is 50, the + patterns appears as 25 on the left, and the – pattern on the right higher than 80. So in this case, it is a + pattern.

4) Verifying the estimated Prediction Equation is adequate.

By conducting the chi-square test with the estimated transpose linear regression prediction equation with the 77 randomly selected species, we verified if the equation is adequate. The null hypothesis is independent from the prediction equation and the other 5 species that was not selected. And the alternative hypothesis is subordinate with the prediction equation and the 5 species. The p-value of the 5 species is independent from the prediction equation estimated by the null hypothesis. We can see that it is subordinate when it is dismissed.

2-2. Region

We estimated the origin which is a part of changed strand’s pattern.

1) The spread of the essential genes is shown at the table below.

The X axis shows the 20 sections of the genome size. And the Y axis is the frequency of the genome. As a result to guess the distribution of the essential gene, the graph is showed like that. We know that 322 essential genes among 485 essential gene are distributed a bilateral symmetry in the middle of origin. We can divide between the Synb_ID which is the origin of high frequency and Synb_ID which is the origin of high frequency by both sides.

2) The spread of the genes provided COG is shown at the table below.

The X axis shows the 20 sections of the genome size. And the Y axis is the frequency of the gene provided the COG.
As a result to guess the distribution of gene by being provided COG, the graph provide an information that the COG is distributed symmetrically around the middle of origin.