Template:Team:Amsterdam/testpage
From 2012.igem.org
(11 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | + | <html> | |
- | $ | + | <!-- STYLESHEET --> |
- | + | <!-- *********** --> | |
- | + | ||
- | \end{ | + | <link rel="stylesheet" href="https://2012.igem.org/Team:Amsterdam/mstylesheet?action=raw&ctype=text/css" type="text/css" /> |
- | \ | + | |
- | + | <!-- JAVASCRIPTS --> | |
+ | <!-- *********** --> | ||
+ | |||
+ | <!-- ie9.js (fixes all Internet Explorer browsers older than ie9) --> | ||
+ | <!--[if lt IE 9]> | ||
+ | <script src="http://ie7-js.googlecode.com/svn/version/2.1(beta4)/IE9.js"></script> | ||
+ | <![endif]--> | ||
+ | |||
+ | <!-- jQuery Tools (slider) --> | ||
+ | <script src="http://cdn.jquerytools.org/1.2.5/full/jquery.tools.min.js"></script> | ||
+ | <script> | ||
+ | $(function() { | ||
+ | // initialize scrollable | ||
+ | $(".scrollable").scrollable().navigator(); | ||
+ | }); | ||
+ | </script> | ||
+ | |||
+ | <!-- Navigation scroll follow --> | ||
+ | <script type="text/javascript"> | ||
+ | $(window).scroll(function () { | ||
+ | var scrollPos = $(window).scrollTop(); | ||
+ | if (scrollPos > 110) { | ||
+ | $(".navigation").addClass("stickToTop"); | ||
+ | } else { | ||
+ | $(".navigation").removeClass("stickToTop"); | ||
+ | } | ||
+ | if (scrollPos > 180) { | ||
+ | $(".toc").addClass("stickBelowNavigation"); | ||
+ | } else { | ||
+ | $(".toc").removeClass("stickBelowNavigation"); | ||
+ | } | ||
+ | }); | ||
+ | </script> | ||
+ | |||
+ | <!-- MathJax (LaTeX for the web) --> | ||
+ | <script type="text/x-mathjax-config"> | ||
+ | MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | ||
+ | MathJax.Hub.Config({ | ||
+ | TeX: { | ||
+ | equationNumbers: { autoNumber: "AMS" } | ||
+ | } | ||
+ | }); | ||
+ | </script> | ||
+ | <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | ||
+ | |||
+ | <!-- Sexy Drop Down (drop down navigation) --> | ||
+ | <script type="text/javascript"> | ||
+ | $(document).ready( | ||
+ | function(){ | ||
+ | $("ul.subnav").parent().find("> a").append("<span> ▼</span>"); | ||
+ | $("ul.topnav li").hover( | ||
+ | function() { | ||
+ | // Hover over | ||
+ | $(this).parent().find("ul.subnav").hide(); | ||
+ | $(this).find("ul.subnav").show(); | ||
+ | // Hover out | ||
+ | $(this).hover( | ||
+ | function() { | ||
+ | }, | ||
+ | function(){ | ||
+ | $(this).find("ul.subnav").hide(); | ||
+ | } | ||
+ | ); | ||
+ | }, | ||
+ | function(){ | ||
+ | $(this).find("ul.subnav").hide(); | ||
+ | } | ||
+ | |||
+ | ); | ||
+ | } | ||
+ | ); | ||
+ | </script> | ||
+ | |||
+ | <!-- iGem wiki hacks --> | ||
+ | <!-- Remove all empty <p> tags --> | ||
+ | <script type="text/javascript"> | ||
+ | $(document).ready(function() { | ||
+ | $("p").filter( function() { | ||
+ | return $.trim($(this).html()) == ''; | ||
+ | }).remove(); | ||
+ | }); | ||
+ | </script> | ||
+ | |||
+ | <!-- Remove "team" from the menubar --> | ||
+ | <script type="text/javascript"> | ||
+ | $(document).ready(function() { | ||
+ | $("menubar > ul > li:last-child").remove(); | ||
+ | }); | ||
+ | </script> | ||
+ | |||
+ | <!-- Empty heading? - Then remove it.. --> | ||
+ | <script type="text/javascript"> | ||
+ | $(document).ready(function() { | ||
+ | if ("" == "</html>{{{1}}}<html>") { | ||
+ | $("#heading").remove(); | ||
+ | } | ||
+ | }); | ||
+ | </script> | ||
+ | |||
+ | |||
+ | <!-- HTML CONTENT --> | ||
+ | <!-- ************ --> | ||
+ | |||
+ | <!-- Header image --> | ||
+ | <div id="header"> | ||
+ | <div class="centering"> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <!-- Navigation bar --> | ||
+ | </html>{{MaartenNavigationbar}}<html> | ||
+ | |||
+ | <!-- Page heading --> | ||
+ | <div id="heading"> | ||
+ | <div class="centering"> | ||
+ | <h1> | ||
+ | </html> | ||
+ | {{{1}}} | ||
+ | <html> | ||
+ | </h1> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <!-- Prepare for content --> | ||
+ | <div id="innercontent"> | ||
+ | <div class="centering"> | ||
+ | <div class="whitebox article"> | ||
+ | </html> | ||
+ | == Simplification and construction of ODEs == | ||
+ | The general reaction scheme is | ||
+ | \begin{align} | ||
+ | \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ | ||
+ | \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ | ||
+ | \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ | ||
+ | \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ | ||
+ | \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ | ||
+ | \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ | ||
+ | \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r | ||
+ | \end{align} |
Latest revision as of 16:27, 24 September 2012
{{{1}}}
Simplification and construction of ODEs
The general reaction scheme is \begin{align} \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r \end{align}
\begin{align} \color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\ \color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r \end{align}
\begin{align}
\color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\
\color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r
\end{align}
\begin{align}
\color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\
\color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r
\end{align}
\begin{align}
\color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\
\color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r
\end{align}
\begin{align}
\color{blue} m + \color{red}s &\mathop{\rightleftharpoons}_{k_{-1,s}}^{k_{1,s}} c_{ms} \mathop{\rightarrow}^{k_{2,s}} (1 - p_s) \color{red} s \\
\color{red} s + \color{green} r &\mathop{\rightleftharpoons}_{k_{-1,r}}^{k_{1,r}} c_{sr} \mathop{\rightarrow}^{k_{2,r}} (1-p_r) \color{green} r
\end{align}