Team:Stanford-Brown

From 2012.igem.org

(Difference between revisions)
 
(100 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:Stanford-Brown/Templates/Main}}
{{:Team:Stanford-Brown/Templates/Main}}
-
{{:Team:Stanford-Brown/Templates/Content}}
 
-
{{:Team:Stanford-Brown/Templates/Twitter}}
 
-
{{:Team:Stanford-Brown/Templates/Test}}
 
-
 
-
= '''The Transit of Synthetic Astrobiology''' =
 
-
Astrobiology revolves around three central questions: “Where do we come from?”, “Where are we going?”, and “Are we alone?” The Stanford-Brown iGEM team explored synthetic biology’s untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions in situ. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan’s theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology’s value as a tool for astrobiology.
 
<html>
<html>
-
</div>
 
-
<div class="miniContent">
 
-
<div class="miniContentLeft">
 
-
<h3><img src="https://static.igem.org/mediawiki/2012/1/13/HellCell_Thumb.png" width="70px"> <a href="/Team:Stanford-Brown/HellCell/Introduction">Hell Cell</a></h3>
 
-
</html>
 
-
Surviving in the harsh conditions of space is not easy for an organism. Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey. We hope to equip our organisms with the ability to live and thrive in space, and maybe even Venus!
+
<head>
-
<html>
+
<style>
-
</div>
+
#content {
 +
      background: none;
 +
      box-shadow: 0px 0px 0px 0px;
-
<div class="miniContentRight">
+
#bodyContent {
-
<h3><img src="https://static.igem.org/mediawiki/2012/8/8c/VenusLife_Thumb.png" width="70px"> <a href="/Team:Stanford-Brown/VenusLife/Introduction">Venus Life</a></h3>
+
      margin-left: -1px;
-
</html>
+
-
The surface of Venus is harsh and unforgiving. However, research suggests that there may be layers of its atmosphere that are more temperate. We aim to see whether or not it is possible for bacteria to survive and replicate in an aerosolized environment, and then put our Hell Cell to the test!
+
#footer-box {
-
<html>
+
width: 965px;
 +
padding: 5px;
 +
background-color: white;
 +
        margin: 0 auto;
 +
border: 0px;
 +
        border-radius: 5px 5px 5px 5px;
 +
        box-shadow: 0px 2px 6px 2px #222;
 +
}
-
</div>
+
</style>
-
<div class="miniContentCenter">
+
</head>
-
<h3><img src="https://static.igem.org/mediawiki/2012/f/fb/Biomining_Thumb.png" width="70px"> <a href="/Team:Stanford-Brown/Biomining/Introduction">Biomining</a></h3>
+
-
</html>
+
-
If we are to colonize space, we are going to need rare metals for materials. But bringing the heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us!
+
<body class="space">
 +
  <div id="bottom-panel">
 +
    <table>
 +
      <tr>
 +
        <td>
 +
          <div style="width: 580px; margin-top:0px;">
 +
            <span id="abs-title" style="margin-top:-30px;"><a href="/Team:Stanford-Brown/AboutUs/Recruiting">COME JOIN US IN 2013! CLICK HERE!</a></span>
 +
            <span id="abs-title">ABSTRACT</span>
 +
            <span style="float: left;">
 +
              <p id="abs-text">
 +
                Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?"  The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions <i>in situ</i>. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.
 +
              </p>
 +
            </span>
 +
          </div>
 +
        </td>
 +
        <td>
 +
          <div class="accomps">
 +
            <div style="margin-top:15px; text-align:center; font-weight: 600; font-size: 18px;">ACCOMPLISHMENTS</div>
 +
              <ul>
 +
                <li> <a href="#"> Introduced Synthetic Biology as a tool for Astrobiology </a></li>
 +
                <li> <a href="#">Top 16 at iGEM World Competition </a></li>
 +
                <li> <a href="#">Best Natural BioBrick at Americas West Regionals </a></li>
 +
                <li> <a href="/Team:Stanford-Brown/HellCell/Introduction">Isolated parts that improve resistance to extreme conditions in <i>Escherichia coli</i></a></li>
 +
                <li> <a href="/Team:Stanford-Brown/VenusLife/Biosensing">Developed two cell-cycle dependent promoters for use as remote biosensors </a></li>
 +
                <li> <a href="/Team:Stanford-Brown/Biomining/Harvesting">Improved part BBa_K133038 by standardizing ligation into flagella and engineered the <i>E. coli</i> flagellum to extract metals <i>in situ</i></a></li>
 +
                <li> <a href="/Team:Stanford-Brown/VenusLife/Modeling">Modeled bacterial growth in the Venusian atmosphere </a></li>
 +
                <li> <a href="/Team:Stanford-Brown/HumanPractices/Introduction">Wrote Guides to Bioethics and Gene Patent Law </a></li>
 +
                <li> <a href="http://www.wired.com/wiredscience/2012/08/engineering-bacteria-for-mars/">Featured in Wired Magazine and Cal Academy of Sciences </a></li>
 +
                <li> <a href="http://www.facebook.com/IgemMemes">Created and maintained iGEM memes </a></li>
 +
              </ul>
 +
            </div>
 +
          </div>
 +
        </td> 
 +
      </tr> 
 +
    </table>
 +
  </div> <!-- bottom panel -->
 +
 
 +
  <div id="proj-panel">
 +
    <table style="margin-left: 15px;">
 +
      <tr>
 +
        <td>
 +
          <div class="feature"><a href="https://2012.igem.org/Team:Stanford-Brown/HellCell/Introduction"><img src="https://static.igem.org/mediawiki/2012/5/5a/HellCell.png" width="281"/></a>
 +
            <p class="brief">Surviving in the harsh conditions of space is not easy for an organism.  Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey.  We successfully strengthened our organisms with some of these abilities––desiccation and extreme basicity--in preparation for a journey into space!
 +
            </p> 
 +
          </div>
 +
        </td> 
 +
        <td>
 +
          <div class="feature"><a href="https://2012.igem.org/Team:Stanford-Brown/VenusLife/Introduction"><img src="https://static.igem.org/mediawiki/2012/d/dc/Venus.png" width="281"/></a>
 +
            <p class="brief">The surface of Venus is a harsh and unforgiving environment.  However, research suggests that there may be layers of its atmosphere that are more temperate.  To prepare for tests to see if organisms can survive in the clouds of Venus, we successfully developed cell-cycle dependent reporters to tell us when our cells are happy and dividing!
 +
            </p> 
 +
          </div>
 +
        </td>
 +
        <td>
 +
          <div class="feature"><a href="https://2012.igem.org/Team:Stanford-Brown/Biomining/Introduction"><img src="https://static.igem.org/mediawiki/2012/6/60/Biomining.png" width="281" /></a>
 +
            <p class="brief">If we are to colonize space, we are going to need rare metals for materials. But bringing heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us, and we equipped their flagella with the tools to do so!
 +
            </p>
 +
          </div>
 +
        </td>
 +
      </tr>
 +
    </table>
 +
  </div>
-
<html>
+
 
-
</div>
+
  </div>
-
 
+
-
</div>
+
</body>
-
<div class="pageContent">
+
-
</html>
+
-
 
+
-
=== '''News!''' ===
+
-
<html>
+
-
The Stanford-Brown iGEM Team featured on <a href="http://www.wired.com/wiredscience/2012/08/engineering-bacteria-for-mars/">Wired.com</a>!
+
</html>
</html>

Latest revision as of 03:42, 8 January 2013

COME JOIN US IN 2013! CLICK HERE! ABSTRACT

Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?" The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions in situ. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.

Surviving in the harsh conditions of space is not easy for an organism. Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey. We successfully strengthened our organisms with some of these abilities––desiccation and extreme basicity--in preparation for a journey into space!

The surface of Venus is a harsh and unforgiving environment. However, research suggests that there may be layers of its atmosphere that are more temperate. To prepare for tests to see if organisms can survive in the clouds of Venus, we successfully developed cell-cycle dependent reporters to tell us when our cells are happy and dividing!

If we are to colonize space, we are going to need rare metals for materials. But bringing heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us, and we equipped their flagella with the tools to do so!