Team:Wageningen UR/Project

From 2012.igem.org

(Difference between revisions)
 
(82 intermediate revisions not shown)
Line 1: Line 1:
{{Template:WUR}}
{{Template:WUR}}
 +
__NOTOC__
-
<div id="projectOverview">
+
<html><script>document.getElementById("header_slider").style.backgroundImage = "url(https://static.igem.org/mediawiki/2012/6/60/HeaderProject.jpg)";</script></html>
-
<div id="poPnas">
+
<div class="cols">
-
<p><b>P'NAS</b>: Coming soon...</p>
+
<div class="col">
-
</div>
+
-
<div id="poVLPs">
+
= Introduction =
-
<p><b>VLPs' origins</b>: Three different viruses were selected to serve as a platform: Cowpea Chlorotic Mottle Virus, Hepatitis B Virus and Polerovirus. All of them bear much promise for their respective qualities.</p>
+
<p align="justify">
-
</div>
+
The Wageningen UR [[Team:Wageningen_UR/Team|team]] has worked on the modification of virus-like particles ([[Team:Wageningen_UR/VLPs|VLPs]]) to make them interesting platforms for [[Team:Wageningen_UR/Applications|vaccine production and/or site specific drug delivery.]] [[Team:Wageningen_UR/VLPs|VLPs]] are empty virus capsids, meaning that they do not contain any viral genome and proteins except for the coat proteins. Coat proteins of some viruses have shown the ability to self-assemble in absence of its viral genome and other viral proteins, and thus form VLPs. Our [[Team:Wageningen_UR/HumanBody|human body model]] gives us an inside about how our drug delivery system would improve drug application. <br />
 +
<br />
 +
Besides the work done in the wet lab on VLPs, the team developed a web based tool that simplifies the design of the best cloning strategy: [[Team:Wageningen_UR/TheConstructor|The Constructor]]. The team cooperated with the 2011 Wageningen UR iGEM team for this project. Their experiences were used to further develop the tool adding features and making a user-friendly and easily accessible tool. This work has already been [[Team:Wageningen_UR/TheConstructor#Our_Publication|published]].
 +
<br>
 +
<br>
 +
Our Virus-Like particle will guide you through the project.
 +
</p>
-
<div id="poOutside">
 
-
<p><b>Outside modification</b>: By adding a k-coil to the outside of a VLP, the P’nAS system can be used to attach any ligand or antigen to the particle.</p>
 
</div>
</div>
-
 
+
<div class="twocol">
-
<div id="poInside">
+
{{Template:WUR_PO3}}
-
<p><b>Inside modification</b>: VLPs lack genetic content, which makes it possible to load them with small proteins. By modifying the CCMV VLP, we managed to add a negative charge to the interior, enabling us to load metals to the inside.</p>
+
</div>
</div>
-
 
-
<div id="poApplications">
 
-
<p><b>Applications: </b>Our VLPs with the PnA System can be used to package medicine and target specific cells. They can also be used as standardized vaccine platforms, nanoreactors, or novel building blocks.</p>
 
</div>
</div>
 +
<html>
 +
<div class="prNav">
 +
<div class="next">
 +
  <a href="https://2012.igem.org/Team:Wageningen_UR/Coil_system#The_Plug_and_Apply_.28PnA.29_System" title="Plug 'n Apply System">2. Plug 'n Apply System</a>
 +
</div>
</div>
</div>
-
 
+
</html>
-
= '''Modification of Virus-Like-Particles''' =
+
-
 
+
-
This year, the Wageningen UR team 2012 will work on the modification of virus-like particles (VLPs) to make them interesting platforms for vaccine production and/or site specific drug delivery. VLPs are empty virus capsids, meaning that they do not contain any viral genome, proteins and epitopes, except for the coat proteins. Coat proteins of some viruses have shown the ability to self-assemble in absence of its viral genome and other viral proteins, and thus form VLPs.
+
-
 
+
-
== Introduction ==
+
-
The plan of our project is to use these VLPs to create a universal platform on which vaccines can be created or with which drugs can be delivered. To facilitate this, we want to put anchors on the outside of the VLP to attach antigens and ligands to, and anchors on the inside to attach medicine to, which is then encapsulated by the VLP. The anchors that we want to use are charged coils, which are already being used to encapsulate GFP into Cowpea Chlorotic Mottle Virus (CCMV) VLPs. This technique relies on charged coil peptides (negatively charged E-coil and positively charged K-coil) that can form ion bonds together. We want to use this technique to obtain a universal attachment system with which we can attach all kinds of epitopes to the VLP.
+
-
 
+
-
We selected 3 viruses that we want to use to produce VLPs with universal attachment units on the inside and outside of the VLPs. We have selected them based on existing experience at Wageningen University, increasing the probability of success and their promising structure. Besides CCMV, we will use the Hepatitis B core antigen VLP for the production of vaccines. The Potato Leaf Roll (PoLeRo) virus will be used to yield a newly expressed VLP in E. coli, because of its promising structure with outside spikes that are easy to modify. All three VLPs will be expressed in E. coli and all three will need to be submitted in the same standardised form for the competition. Therefore we will use the same E. coli strain for all three tracks. This increases the efficiency of the whole projects, because growing conditions will be the same.
+
-
 
+
-
<h2>Project description Team Wageningen_UR</h2>
+
-
 
+
-
<span id="project-title">Synthetic biological approach for the development of standardized medical delivery systems</span>
+
-
 
+
-
 
+
-
Our team will join the competition with a medically focussed project on Virus-Like Particles (VLPs). VLPs are empty viruses that lack a genetic content, and can therefore not self-replicate. These VLPs can be modified to make vaccines or used as bio-nano carriers for site-specific drug delivery.
+
-
 
+
-
The development of conventional vaccines is slow, laborious and costly. VLPs can serve as a cheap and standardized platform for the development and production of vaccines, making preventive healthcare accessible worldwide.
+
-
Three different viruses will serve as initial workhorses. Cowpea Chlorotic Mottle Virus (CCMV), Turnip Yellows Virus (TuYV) and Hepatitis B (HepB) have been selected for their promising properties in either packaging molecules or modification possibilities on the outside of the particle. The research done on these three VLPs should lead to one standardized tool.
+
-
 
+
-
Charged coils applied on the outside of the VLP will serve as a docking site in order to obtain one standardized tool for medical delivery systems. The epitope of interest is fused to the oppositely charged coil designed to connect to the docking site. With this, a Plug and Apply system is designed, creating the desired standardized platform.
+
-
 
+
-
Modification of the monomere can inhibit multimerization and with it formation of the VLP. Therefore, tertiary and quarternary protein structure modelling is used to predict whether the modification will inhibit assembly. If the in silico results are positive, the construct will be made and cloned in Escherichia coli.
+
-
 
+
-
Formation of VLPs is usually confirmed using Electron Microscopy (EM). This is rather time consuming and expensive, so Dynamic Light Scattering (DLS) is investigated as an alternative method. DLS can provide an indication of VLP formation but conclusive evidence should be obtained by EM.
+
-
 
+
-
The formation of the first VLP samples is confirmed by using these two detection methods, and the gene is standardized conform the rules of iGEM. This gene will now serve for further development of the standardized medical delivery systems, making mass development and production of new vaccines possible.
+
-
 
+
-
 
+
-
== Project Description ==
+
-
 
+
-
Inside modification: Packaging
+
-
 
+
-
* [[Team:Wageningen_UR/ModifyingtheCCMV|Project CCMV]]
+
-
 
+
-
Outside modification: Ligand/etpitope presentation
+
-
 
+
-
* [[Team:Wageningen_UR/OudsiteModification|Outside Modification]]
+
-
 
+
-
Natural biobrick:
+
-
 
+
-
* [[Team:Wageningen_UR/ObtainingthePoleroVLP|Project Polero]]
+

Latest revision as of 15:51, 26 October 2012


Introduction

The Wageningen UR team has worked on the modification of virus-like particles (VLPs) to make them interesting platforms for vaccine production and/or site specific drug delivery. VLPs are empty virus capsids, meaning that they do not contain any viral genome and proteins except for the coat proteins. Coat proteins of some viruses have shown the ability to self-assemble in absence of its viral genome and other viral proteins, and thus form VLPs. Our human body model gives us an inside about how our drug delivery system would improve drug application.

Besides the work done in the wet lab on VLPs, the team developed a web based tool that simplifies the design of the best cloning strategy: The Constructor. The team cooperated with the 2011 Wageningen UR iGEM team for this project. Their experiences were used to further develop the tool adding features and making a user-friendly and easily accessible tool. This work has already been published.

Our Virus-Like particle will guide you through the project.

1. Introduction

The Wageningen UR team has worked on the modification of virus-like particles (VLPs) to make them interesting platforms for vaccine production and/or site specific drug delivery. VLPs are empty virus capsids, meaning that they do not contain any viral genome and proteins except for the coat proteins. Coat proteins of some viruses have shown the ability to self-assemble in absence of its viral genome and other viral proteins, and thus form VLPs. Our human body model gives us an inside about how our drug delivery system would improve drug application.

2. Plug 'n Apply
System

A big challenge of our project is the attachment of ligands and functional proteins on either the outside or inside of a virus-like particle (VLP). We decided to use a noncovalent anchor-like system, which consists of two different coiled-coil proteins. We call it the Plug-and-Apply-system (PnA-system).

3. Virus Like
Particles

A Virus-Like Particle (VLP) is a shell of viral Coat Proteins (CPs) that spontaneously assemble with the right conditions. Although a VLP resembles the original virus in shape and size, it lacks both the external sites that are usually required for the infection of cells and the internal machinery needed for viral replication. Moreover, they also lack the viral genetics to be transcribed and replicated.

4. Outside
Modification

The monomers of virus-like particles (VLPs) have been subject to many modifications of which some are aimed at changing the appearance of the particle. By changing the outside, the VLP acquires new properties which have been used mainly in vaccine development . The modification we pursue is adding a coil to the protein subunits, at any location that is exposed on the outside of the VLP. This can be a fusion to a C or N-terminal, but a modification in a loop is possible as well.

5. Inside
Modification

Since virus-like particles (VLPs) lack genetic content, they enclose an empty space. This space can be filled with proteins such as antibiotics, hormones, and all sorts of pharmaceuticals. Modifications on the inside of the VLPs can increase binding affinity to the loaded substance. The first modifications we pursue is adding the K-coil to the protein subunits at any location that is exposed on the inside of the VLP.

6. Detection

A key part of our project is the detection of VLPs. We need sufficient visualization to get conclusive evidence of VLP formation. Besides standard approaches, we will investigate alternative methods to detect the formation and stability of Virus-Like Particles.

7. Applications

The goal of our project is to construct standardized self-assembling particles with a simple and versatile attachment system for either packaging molecules, presenting ligands/epitopes, or both. By combining the PnA (Plug 'n Apply) System and Virus-Like Particles (VLPs), we create a tool that can be applied in numerous applications.

8. The Constructor

The registry is the substrate to make complex devices. We designed a web tool that facilitates an automatic cloning recommendation which outcompetes manual querying of the BioBrick parts from the registry. Besides constructing the best cloning strategy, The Constructor also allows the user to select for BioBrick quality and availability.

9. Final
Overview

"If it turns out that the combination of delivery and medicine has a superior ability to cure, everything is achievable in the modern world." Senior Project Leader in veterinary medicine at MSD. "Having in place a system that can rapidly develop a vaccine against unexpected viral agents would be of great importance for public health." ECDC Program Leader Vaccine Preventable Diseases