Team:Wageningen UR/Modeling

From 2012.igem.org

(Difference between revisions)
(Results)
(Modeling)
Line 9: Line 9:
= Modeling =
= Modeling =
-
Formation of modified Virus-Like Particles is key to the success of our project. Therefore we first [[Team:Wageningen_UR/Modeling#In_silico_folding_prediction|predict the structure of the subunits]] after which we use a [[Team:Wageningen_UR/Modeling#Mathemathic_VLPs_assembly_model|model describing the formation of the whole VLPs]].
+
Formation of modified Virus-Like Particles is key to the success of our project. Therefore we first [[Team:Wageningen_UR/InSilico|predict the structure of the subunits]] after which we use a [[Team:Wageningen_UR/FormationModel|model describing the formation of the whole VLPs]].
Finally, we wanted to know the applicability of our device. Therefore, we used a human body model which is based on the model made by the [[Team:Slovenia/ModelingPK|Slovenia 2012 iGEM team]]. We extensively modifyed this model to make it applicable for VLPs, their affinity with diseased tissue, the speed of excretion and degradation and finally, the drug delivery at the targeted tissue.
Finally, we wanted to know the applicability of our device. Therefore, we used a human body model which is based on the model made by the [[Team:Slovenia/ModelingPK|Slovenia 2012 iGEM team]]. We extensively modifyed this model to make it applicable for VLPs, their affinity with diseased tissue, the speed of excretion and degradation and finally, the drug delivery at the targeted tissue.

Revision as of 10:39, 26 October 2012

Modeling

Formation of modified Virus-Like Particles is key to the success of our project. Therefore we first predict the structure of the subunits after which we use a model describing the formation of the whole VLPs.

Finally, we wanted to know the applicability of our device. Therefore, we used a human body model which is based on the model made by the Slovenia 2012 iGEM team. We extensively modifyed this model to make it applicable for VLPs, their affinity with diseased tissue, the speed of excretion and degradation and finally, the drug delivery at the targeted tissue.