Team:uOttawa CA/Results

From 2012.igem.org

(Difference between revisions)
 
(27 intermediate revisions not shown)
Line 2: Line 2:
<html>
<html>
<a name="top"></a>
<a name="top"></a>
-
<a href="#scroll-one">Project 1</a> <a href="#scroll-two">Project 2</a>
+
<table class="center bold" width="970">
-
<a href="#top"><img src="https://static.igem.org/mediawiki/2012/4/49/ProjectRibbon.png" alt="" /></a>
+
<tr>
 +
<td><a href="#scroll-one" class="Orange">Analysis</a></td>
 +
<td><a href="#scroll-two" class="Orange">Promoters</a></td>
 +
<td><a href="#scroll-three" class="Orange">Protocols</a></td>
 +
</tr>
 +
</table><br /><br />
 +
 
 +
<html>
 +
<a name="scroll-one"></a>
 +
<a href="#top"><img src="https://static.igem.org/mediawiki/2012/e/e7/UottawaArrowtotheknee6_out.png" alt="" /></a>
</html>
</html>
-
<html><a name="scroll-one"></a></html>'''Inducible systems'''
 
-
A current problem with designing synthetic networks is a lack of ability to externally control the system. By integrating and optimizing bacterial systems in ''S. cerevisiae'' the uOttawa team hopes to generate a new inducible system that can be used for synthetic gene network design in yeast.
+
'''Characterization Data'''
<html>
<html>
-
<a href="https://static.igem.org/mediawiki/2012/a/ad/ProjectPics.png" target="_blank"><img class="fr" width="400" src="https://static.igem.org/mediawiki/2012/a/ad/ProjectPics.png" /></a>
+
<a href="https://static.igem.org/mediawiki/2012/5/51/UottawaResults2.png" target="_blank"><img class="center" width="300" src="https://static.igem.org/mediawiki/2012/5/51/UottawaResults2.png" /></a>
-
</html>
+
</html><br /><br />
 +
The strains for characterizing the Tet repressor have been built. Characterization data of the Tet-BFP diploid strains (b) are shown below.
-
'''Combinatorial Mating and Gene Regulatory Systems'''
 
-
An advantage of using yeast as a model organism is its ability to exist in both haploid and diploid states. The uOttawa team plans to utilize this ability to combinatorially mate haploid strains to build gene networks. A haploid
+
<html>
-
strain that acts as reporter for gene regulatory proteins can be used as a "testing" strain and mated with other haploid "sample" strains to quickly and efficiently test gene regulatory functions.
+
<a href="https://static.igem.org/mediawiki/2012/3/33/UottawaResultsFINAL2.png" target="_blank"><img class="center" width="450" src="https://static.igem.org/mediawiki/2012/3/33/UottawaResultsFINAL2.png" /></a>
 +
</html><br /><br /><br />
-
'''Shuttle Vector'''
+
<html>
 +
<a name="scroll-two"></a>
 +
<a href="#top"><img src="https://static.igem.org/mediawiki/2012/9/9f/UottawaArrowtotheknee3.png" alt="" /></a>
 +
</html>
-
By building an ''E.coli/S.cerevisiae'' shuttle vector we can take advantage of the high reproductive rate
+
'''Promoter Design'''
-
of ''E.coli'' and the gene synthesis capabilities of ''S.cerevisiae''. Networks will be built via homologous recombination in yeast and replicated in bacteria. Traditional drug selection will be supplemented with colour selection to increase the accuracy of the transformations.
+
 
 +
To test our promoter design protocol, we decided to use the vector PRS416 and primers comprising the distal region of the GAL1 promoter with GAL4 binding sites replaced with tet operator sites. We submitted 9 plasmids for sequencing and our results below elucidate the sequence of our GAL-1 promoter within the PRS416 plasmid.
 +
 
 +
<center><html>
 +
<a href="https://static.igem.org/mediawiki/2012/2/28/UottawaResults8.png" target="_blank"><img class="middle" width="800" src="https://static.igem.org/mediawiki/2012/2/28/UottawaResults8.png" /></a>
 +
</html></center><br />
 +
 
 +
<center>Of the 9 plasmids sequenced, 3 plasmids contained the desired sequence. Thus as a preliminary estimate, our efficiency is about 33%.
<html>
<html>
-
<a name="scroll-two"></a>
+
<a href="https://static.igem.org/mediawiki/2012/8/86/UottawaResults9.png" target="_blank"><img class="middle" width="450" src="https://static.igem.org/mediawiki/2012/8/86/UottawaResults9.png" /></a>
-
<a href="#top"><img src="https://static.igem.org/mediawiki/2012/4/49/ProjectRibbon.png" alt="" /></a>
+
</html>
</html>
 +
<br /><br />
 +
<html>
 +
<a name="scroll-three"></a>
 +
<a href="#top"><img src="https://static.igem.org/mediawiki/2012/4/48/UottawaArrowtotheknee5_out.png" alt="" /></a>
 +
</html></center>
-
'''Combinatorial Mating and Gene Regulatory Systems'''
+
<html>
 +
<a href="https://static.igem.org/mediawiki/2012/3/38/UottawaPROTOCOL1A.png" target="_blank"><img class="fl" width="450" src="https://static.igem.org/mediawiki/2012/3/38/UottawaPROTOCOL1A.png" /></a>
 +
</html>
-
An advantage of using yeast as a model organism is its ability to exist in both haploid and diploid states. The uOttawa team plans to utilize this ability to combinatorially mate haploid strains to build gene networks. A haploid
+
<html>
-
strain that acts as reporter for gene regulatory proteins can be used as a "testing" strain and mated with other haploid "sample" strains to quickly and efficiently test gene regulatory functions.
+
<a href="https://static.igem.org/mediawiki/2012/5/59/UottawaPROTOCOL1B.png" target="_blank"><img class="fr" width="450" src="https://static.igem.org/mediawiki/2012/5/59/UottawaPROTOCOL1B.png" /></a>
-
'''Shuttle Vector'''
+
<html>
 +
<a href="https://static.igem.org/mediawiki/2012/6/62/UottawaDNA1.png" target="_blank"><img class="fl" width="450" src="https://static.igem.org/mediawiki/2012/6/62/UottawaDNA1.png" /></a>
 +
</html>
-
By building an ''E.coli/S.cerevisiae'' shuttle vector we can take advantage of the high reproductive rate
 
-
of ''E.coli'' and the gene synthesis capabilities of ''S.cerevisiae''. Networks will be built via homologous recombination in yeast and replicated in bacteria. Traditional drug selection will be supplemented with colour selection to increase the accuracy of the transformations.
 
{{Template:uOttawa_Footer}}
{{Template:uOttawa_Footer}}

Latest revision as of 03:58, 4 October 2012

Analysis Promoters Protocols



Characterization Data



The strains for characterizing the Tet repressor have been built. Characterization data of the Tet-BFP diploid strains (b) are shown below.






Promoter Design

To test our promoter design protocol, we decided to use the vector PRS416 and primers comprising the distal region of the GAL1 promoter with GAL4 binding sites replaced with tet operator sites. We submitted 9 plasmids for sequencing and our results below elucidate the sequence of our GAL-1 promoter within the PRS416 plasmid.


Of the 9 plasmids sequenced, 3 plasmids contained the desired sequence. Thus as a preliminary estimate, our efficiency is about 33%.