Team:uOttawa CA/Results

From 2012.igem.org

(Difference between revisions)
Line 40: Line 40:
</html>
</html>
-
'''Combinatorial Mating and Gene Regulatory Systems'''
+
'''Promoter Design'''
-
An advantage of using yeast as a model organism is its ability to exist in both haploid and diploid states. The uOttawa team plans to utilize this ability to combinatorially mate haploid strains to build gene networks. A haploid
+
To test our promoter design protocol, we decided to use the vector pRS416 and primers comprising the distal region of the GAL1 promoter with GAL4 binding sites replaced with tet operator sites. We submitted 9 plasmids for sequencing and our results below elucidate the sequence of our GAL-1 promoter within the PRS-416 plasmid:
-
strain that acts as reporter for gene regulatory proteins can be used as a "testing" strain and mated with other haploid "sample" strains to quickly and efficiently test gene regulatory functions.
+
-
 
+
-
'''Shuttle Vector'''
+
-
 
+
-
By building an ''E.coli/S.cerevisiae'' shuttle vector we can take advantage of the high reproductive rate
+
-
of ''E.coli'' and the gene synthesis capabilities of ''S.cerevisiae''. Networks will be built via homologous recombination in yeast and replicated in bacteria. Traditional drug selection will be supplemented with colour selection to increase the accuracy of the transformations.
+
{{Template:uOttawa_Footer}}
{{Template:uOttawa_Footer}}

Revision as of 01:24, 4 October 2012

Results 1   Results 2

Characterization Data


The strains for characterizing the Tet repressor have been built. Characterization data of the Tet-BFP diploid strains (b) are shown below.





















Promoter Design

To test our promoter design protocol, we decided to use the vector pRS416 and primers comprising the distal region of the GAL1 promoter with GAL4 binding sites replaced with tet operator sites. We submitted 9 plasmids for sequencing and our results below elucidate the sequence of our GAL-1 promoter within the PRS-416 plasmid: