Team/CINVESTAV-IPN-UNAM MX/automata.htm

From 2012.igem.org

(Difference between revisions)
(Created page with "<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!-- saved from url=(0014)about:internet --> <html xmlns...")
 
(2 intermediate revisions not shown)
Line 1: Line 1:
-
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 
-
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 
-
<!-- saved from url=(0014)about:internet -->
 
<html xmlns="http://www.w3.org/1999/xhtml"><head>
<html xmlns="http://www.w3.org/1999/xhtml"><head>
<title>Home</title>
<title>Home</title>
Line 75: Line 72:
             <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Labs.htm">Labs<span class="flecha">&#9660;</span></a></li>
             <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Labs.htm">Labs<span class="flecha">&#9660;</span></a></li>
             <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Sponsor.htm">Sponsor<span class="flecha">&#9660;</span></a></li>
             <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Sponsor.htm">Sponsor<span class="flecha">&#9660;</span></a></li>
-
            <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Gallery.htm">Gallery<span class="flecha">&#9660;</span></a></li>
 
             <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Acknowledgments.htm">Acknowledgments<span class="flecha">&#9660;</span></a></li>
             <li><a href="/Team/CINVESTAV-IPN-UNAM_MX/Acknowledgments.htm">Acknowledgments<span class="flecha">&#9660;</span></a></li>
Line 99: Line 95:
<div id="bodys_r1_c3">
<div id="bodys_r1_c3">
      
      
-
       <img src="images/Modelling.fw.png" width="500" height="92" /> </div>
+
       <img src="https://static.igem.org/mediawiki/2012/0/01/Modelling.fw.png" width="500" height="92" /> </div>
<div class="clearFloat"></div>
<div class="clearFloat"></div>
<div id="bodys_r2_c2"></div>
<div id="bodys_r2_c2"></div>
Line 111: Line 107:
       <p><br />
       <p><br />
         At this point, the program runs  simulations based on precompiled transition rules, but due to the inherent  complexity of cellular automata, a single simulation isn´t enough. So the next  step is to vary the concentrations and apply an evolutionary algorithm to  modify the starting conditions of the &quot;game&quot; in each iteration cycle.</p>
         At this point, the program runs  simulations based on precompiled transition rules, but due to the inherent  complexity of cellular automata, a single simulation isn´t enough. So the next  step is to vary the concentrations and apply an evolutionary algorithm to  modify the starting conditions of the &quot;game&quot; in each iteration cycle.</p>
-
       <p><img src="images/pic1.png" width="625" height="305" /></p>
+
       <p><img src="https://static.igem.org/mediawiki/2012/3/3a/Pic1q.png" width="625" height="305" /></p>
<p><strong>Figure 1.  TWO-DIMENSIONAL CELLULAR AUTOMATA.</strong></p>
<p><strong>Figure 1.  TWO-DIMENSIONAL CELLULAR AUTOMATA.</strong></p>
       <p>&nbsp;</p>
       <p>&nbsp;</p>

Latest revision as of 04:07, 27 September 2012

Home

Logo Principal

Cellular automata approaches to biological modeling.


In the near future, our project can be used to produce biofuels, so we decided to create a software that allows us to generate Pilot-Plant simulations. 


To perform this software, we are taking the  two-dimensional Cellular Automata developed  by  John Conway called "GAME OF LIFE", and  extending it over a living cell type, in where there are several stages of the cell and different scope ranges. Our goal is to generate enough simulations at different concentrations of reactants or products under distinct environmental conditions; until the program shows what inputs (concentrations) are optimal to maximize the production.


At this point, the program runs simulations based on precompiled transition rules, but due to the inherent complexity of cellular automata, a single simulation isn´t enough. So the next step is to vary the concentrations and apply an evolutionary algorithm to modify the starting conditions of the "game" in each iteration cycle.

Figure 1.  TWO-DIMENSIONAL CELLULAR AUTOMATA.