Team:TU-Eindhoven/LEC/ModellingFirst

From 2012.igem.org

(Difference between revisions)
 
(2 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:TU-Eindhoven/Templates/header}}
{{:Team:TU-Eindhoven/Templates/header}}
{{:Team:TU-Eindhoven/Templates/head|image=https://static.igem.org/mediawiki/2012/9/92/Initialmodel.jpg}}
{{:Team:TU-Eindhoven/Templates/head|image=https://static.igem.org/mediawiki/2012/9/92/Initialmodel.jpg}}
-
<p>Our goal is to design and produce a multi-colored display, in which genetically engineered cells are electrically controlled to induce a fluorescent light response. In this process, calcium is one of the most important substances. To examine the calcium in the cell, a <span class= "lightblue">dynamic calcium model</span> is designed. As a start, the basic calcium model of sympathetic ganglion ‘B’ type cells of a bullfrog is made in MATLAB and tested. This model is also used by the iGEM team of <html><a href="https://2009.igem.org/Team:Valencia/OurModel" target="_blank">Valencia 2009</a></html>, however we gained more insights in the model by performing a sensitivity analysis. For a complete explanation of the model, view the <html><a href="https://static.igem.org/mediawiki/2012/a/af/IGEM_TUeindhoven_-_Thesis_C_Balemans.pdf">bachelor thesis of Caroline Balemans</a></html>, one of our team members.</p>
+
<p>Our goal is to design and produce a multi-colored display, in which genetically engineered cells are electrically controlled to induce a fluorescent light response. In this process, calcium is one of the most important substances. To examine the calcium in the cell, a <span class= "lightblue">dynamic calcium model</span> is designed. As a start, the basic calcium model of sympathetic ganglion 'B' type cells of a bullfrog is made in MATLAB and tested. This model is also used by the iGEM team of <html><a href="https://2009.igem.org/Team:Valencia/OurModel" target="_blank">Valencia 2009</a></html>, however we gained more insights in the model by performing a sensitivity analysis. For a complete explanation of the model, view the <html><a href="https://static.igem.org/mediawiki/2012/a/af/IGEM_TUeindhoven_-_Thesis_C_Balemans.pdf">bachelor thesis of Caroline Balemans</a></html>, one of our team members.</p>
Line 8: Line 8:
<p>The model consists of the <span class= "lightblue">kinetics of an ionic current flow, the calcium buffers</span> and the <span class= "lightblue">calcium pumps</span>. We neglected the <span class= "lightblue">diffusion</span> in this first attempt, because of the dependence on both space and time and the complexity to model this in MATLAB.</p>
<p>The model consists of the <span class= "lightblue">kinetics of an ionic current flow, the calcium buffers</span> and the <span class= "lightblue">calcium pumps</span>. We neglected the <span class= "lightblue">diffusion</span> in this first attempt, because of the dependence on both space and time and the complexity to model this in MATLAB.</p>
-
[[File:Formulas small.jpg|710px]]
+
[[File:Formulas small.jpg|710px|link=]]
<p>To simulate the model, realistic parameter values should be implemented. Therefore, all parameter values are taken from the book of reference<html><a href="#ref_neuronal" name="text_neuronal"><sup>[1]</sup></a></html>.</p>
<p>To simulate the model, realistic parameter values should be implemented. Therefore, all parameter values are taken from the book of reference<html><a href="#ref_neuronal" name="text_neuronal"><sup>[1]</sup></a></html>.</p>
-
[[File:Plot m cab c.jpg|center|350px|thumb|The value of the activation variable m, the concentration of the protein-calcium complex [CaB] and the concentration of the free calcium in the cell [Ca2+]]]
+
[[File:Plot m cab c.jpg|center|350px|thumb|link=|The value of the activation variable m, the concentration of the protein-calcium complex [CaB] and the concentration of the free calcium in the cell [Ca2+]]]
<br />
<br />
<h3>Sensitivity analysis</h3>
<h3>Sensitivity analysis</h3>
-
<p>A local sensitivity analysis is performed to find out <span class= "lightblue">which parameters</span> of the calcium model <span class= "lightblue">are most sensitive</span>. The sensitivity of a parameter is here defined as the way the solution changes when the parameter is varied 10%. Because sensitivities are small, the right options for MATLAB’s ode15s-solver must be used to get valid results from the sensitivity analysis.</p>
+
<p>A local sensitivity analysis is performed to find out <span class= "lightblue">which parameters</span> of the calcium model <span class= "lightblue">are most sensitive</span>. The sensitivity of a parameter is here defined as the way the solution changes when the parameter is varied 10%. Because sensitivities are small, the right options for MATLAB's ode15s-solver must be used to get valid results from the sensitivity analysis.</p>
<p>The most sensitive parameters for the concentration of the protein-calcium complex [CaB] are the <span class= "lightblue">total buffer concentration </span>[B]<sub>total</sub> and the <span class= "lightblue">equilibrium calcium concentration of the pump </span> [Ca<sup>2+</sup>]<sub>eq</sub>. The parameters for the calcium concentration [Ca<sup>2+</sup>] are approximately of the same sensitivity, except for the concentration at which the inactivation is halfway [K] and the constant extracellular calcium [Ca<sup>2+</sup>]<sub>ex</sub>, which are less sensitive.</p>
<p>The most sensitive parameters for the concentration of the protein-calcium complex [CaB] are the <span class= "lightblue">total buffer concentration </span>[B]<sub>total</sub> and the <span class= "lightblue">equilibrium calcium concentration of the pump </span> [Ca<sup>2+</sup>]<sub>eq</sub>. The parameters for the calcium concentration [Ca<sup>2+</sup>] are approximately of the same sensitivity, except for the concentration at which the inactivation is halfway [K] and the constant extracellular calcium [Ca<sup>2+</sup>]<sub>ex</sub>, which are less sensitive.</p>

Latest revision as of 02:14, 27 September 2012