Team:Copenhagen

From 2012.igem.org

(Difference between revisions)
 
(30 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:Copenhagen/Header}}
{{:Team:Copenhagen/Header}}
<html>
<html>
-
<table id="graa" cellpadding=20px><td width="660px" height="100%" valign="top" ><p align="justify"><h2>iGEM 2012: Copenhagen</h2>
+
<head>
-
Welcome to Team Copenhagen 2012!! 
+
-
In this years project we will produce a construct that allows cyanobacteria to emit light when exposed to darkness for an extended period of time. The advantage of using cyanobacteria over other model organisms, such as E. coli, is that cyanobacteria do not require glucose for growth, but fixate CO2 in the atmosphere.  
+
<table id="graa" cellspacing=20px><td width="660px" height="100%" valign="top" >
 +
<div>
 +
<script type="text/javascript">
 +
 
 +
/***********************************************
 +
* Conveyor belt slideshow script- © Dynamic Drive DHTML code library (www.dynamicdrive.com)
 +
* This notice MUST stay intact for legal use
 +
* Visit Dynamic Drive at http://www.dynamicdrive.com/ for full source code
 +
***********************************************/
 +
 
 +
 
 +
//Specify the slider's width (in pixels)
 +
var sliderwidth="660px"
 +
//Specify the slider's height
 +
var sliderheight="371px"
 +
//Specify the slider's slide speed (larger is faster 1-10)
 +
var slidespeed=2
 +
//configure background color:
 +
slidebgcolor="#999999"
 +
 
 +
//Specify the slider's images
 +
var leftrightslide=new Array()
 +
var finalslide=''
 +
leftrightslide[0]='<img src="https://static.igem.org/mediawiki/2012/9/95/Cop_slide1.jpg" border=1></a>'
 +
leftrightslide[1]='<img src="https://static.igem.org/mediawiki/2012/c/c8/Cop_slide2.jpg" border=1></a>'
 +
leftrightslide[2]='<img src="https://static.igem.org/mediawiki/2012/0/0e/Cop_slide5.jpg" border=1></a>'
 +
leftrightslide[3]='<img src="https://static.igem.org/mediawiki/2012/f/f7/Cop_slide7.jpg" border=1></a>'
 +
leftrightslide[4]='<img src="https://static.igem.org/mediawiki/2012/2/2c/Cop_slide6.jpg" border=1></a>'
 +
leftrightslide[5]='<img src="https://static.igem.org/mediawiki/2012/b/b1/Cop_slide10.jpg" border=1></a>'
 +
leftrightslide[6]='<img src="https://static.igem.org/mediawiki/2012/c/c7/Cop_slide3.jpg" border=1></a>'
 +
leftrightslide[7]='<img src="https://static.igem.org/mediawiki/2012/0/06/Cop_slide9.jpg" border=1></a>'
 +
leftrightslide[8]='<img src="https://static.igem.org/mediawiki/2012/f/fd/Cop_slide4.jpg" border=1></a>'
 +
 
 +
//Specify gap between each image (use HTML):
 +
var imagegap=" "
 +
 
 +
//Specify pixels gap between each slideshow rotation (use integer):
 +
var slideshowgap=0
 +
 
 +
 
 +
////NO NEED TO EDIT BELOW THIS LINE////////////
 +
 
 +
var copyspeed=slidespeed
 +
leftrightslide='<nobr>'+leftrightslide.join(imagegap)+'</nobr>'
 +
var iedom=document.all||document.getElementById
 +
if (iedom)
 +
document.write('<span id="temp" style="visibility:hidden;position:absolute;top:-100px;left:-9000px">'+leftrightslide+'</span>')
 +
var actualwidth=''
 +
var cross_slide, ns_slide
 +
 
 +
function fillup(){
 +
if (iedom){
 +
cross_slide=document.getElementById? document.getElementById("test2") : document.all.test2
 +
cross_slide2=document.getElementById? document.getElementById("test3") : document.all.test3
 +
cross_slide.innerHTML=cross_slide2.innerHTML=leftrightslide
 +
actualwidth=document.all? cross_slide.offsetWidth : document.getElementById("temp").offsetWidth
 +
cross_slide2.style.left=actualwidth+slideshowgap+"px"
 +
}
 +
else if (document.layers){
 +
ns_slide=document.ns_slidemenu.document.ns_slidemenu2
 +
ns_slide2=document.ns_slidemenu.document.ns_slidemenu3
 +
ns_slide.document.write(leftrightslide)
 +
ns_slide.document.close()
 +
actualwidth=ns_slide.document.width
 +
ns_slide2.left=actualwidth+slideshowgap
 +
ns_slide2.document.write(leftrightslide)
 +
ns_slide2.document.close()
 +
}
 +
lefttime=setInterval("slideleft()",30)
 +
}
 +
window.onload=fillup
 +
 
 +
function slideleft(){
 +
if (iedom){
 +
if (parseInt(cross_slide.style.left)>(actualwidth*(-1)+8))
 +
cross_slide.style.left=parseInt(cross_slide.style.left)-copyspeed+"px"
 +
else
 +
cross_slide.style.left=parseInt(cross_slide2.style.left)+actualwidth+slideshowgap+"px"
 +
 
 +
if (parseInt(cross_slide2.style.left)>(actualwidth*(-1)+8))
 +
cross_slide2.style.left=parseInt(cross_slide2.style.left)-copyspeed+"px"
 +
else
 +
cross_slide2.style.left=parseInt(cross_slide.style.left)+actualwidth+slideshowgap+"px"
 +
 
 +
}
 +
else if (document.layers){
 +
if (ns_slide.left>(actualwidth*(-1)+8))
 +
ns_slide.left-=copyspeed
 +
else
 +
ns_slide.left=ns_slide2.left+actualwidth+slideshowgap
 +
 
 +
if (ns_slide2.left>(actualwidth*(-1)+8))
 +
ns_slide2.left-=copyspeed
 +
else
 +
ns_slide2.left=ns_slide.left+actualwidth+slideshowgap
 +
}
 +
}
 +
 
 +
 
 +
if (iedom||document.layers){
 +
with (document){
 +
document.write('<table border="1" cellspacing="0" cellpadding="0"><td>')
 +
if (iedom){
 +
write('<div style="position:relative;width:'+sliderwidth+';height:'+sliderheight+';overflow:hidden">')
 +
write('<div style="position:absolute;width:'+sliderwidth+';height:'+sliderheight+';background-color:'+slidebgcolor+'" onMouseover="copyspeed=0" onMouseout="copyspeed=slidespeed">')
 +
write('<div id="test2" style="position:absolute;left:0px;top:0px"></div>')
 +
write('<div id="test3" style="position:absolute;left:-1000px;top:0px"></div>')
 +
write('</div></div>')
 +
}
 +
else if (document.layers){
 +
write('<ilayer width='+sliderwidth+' height='+sliderheight+' name="ns_slidemenu" bgColor='+slidebgcolor+'>')
 +
write('<layer name="ns_slidemenu2" left=0 top=0 onMouseover="copyspeed=0" onMouseout="copyspeed=slidespeed"></layer>')
 +
write('<layer name="ns_slidemenu3" left=0 top=0 onMouseover="copyspeed=0" onMouseout="copyspeed=slidespeed"></layer>')
 +
write('</ilayer>')
 +
}
 +
document.write('</td></table>')
 +
}
 +
}
 +
</script>
 +
 
 +
</div>
 +
<br>
 +
<h2>Welcome to Team Copenhagen 2012!!</h2>
 +
 
 +
In this years project we will produce a construct that allows cyanobacteria to emit light when exposed to darkness for an extended period of time. The advantage of using cyanobacteria over other model organisms, such as <i>E. coli</i>, is that cyanobacteria do not require glucose for growth, but fixate CO<sub>2</sub> in the atmosphere.  
Promoters that are normally controlling genes involved in the circadian rhythm of cyanobacteria will, in our construct, be associated with a luciferase gene casette containing all the enzymes necessary for the deployment of biologically generated light.
Promoters that are normally controlling genes involved in the circadian rhythm of cyanobacteria will, in our construct, be associated with a luciferase gene casette containing all the enzymes necessary for the deployment of biologically generated light.
The result is a sustainable system in which cyanobacteria per day will synthesize the components necessary for the production of light during periods with light and consume them in darkness under emission of light.</p>
The result is a sustainable system in which cyanobacteria per day will synthesize the components necessary for the production of light during periods with light and consume them in darkness under emission of light.</p>
 +
<br>
 +
<br>
-
<td width="182px" height="100%" valign="top" >
+
<img src="https://static.igem.org/mediawiki/2012/b/b1/Team.JPG" align="center" width="660px" style="border:1px solid black;">
-
<a href="myfile.htm"><img src="https://static.igem.org/mediawiki/2012/7/75/IGEM_Copenhagen_Logo.jpg" align="center" width="250" style="border:1px solid black;"><p align="center" color="#999999">Copenhagen Official Team Profile</p></a>
+
<td width="182px" valign="top"><p align="justify">
-
 
+
<a href="https://igem.org/Team.cgi?id=770"><img src="https://static.igem.org/mediawiki/2012/7/75/IGEM_Copenhagen_Logo.jpg" align="center" width="235" style="border:1px solid black;"><p align="center" color="#999999">Copenhagen Official Team Profile</p></a>
-
</td>
+
</td>
</table>
</table>
 +
<table id="graa" cellpadding=20px><td width="970px" height="100%" valign="top" ><p align="justify"><h2>Sponsors</h2>
 +
 +
<img src="https://static.igem.org/mediawiki/2012/d/d9/Novozymes_lille.jpg"
 +
    style="border:1px solid black;" cellpadding=20px width="150px">
 +
 +
<img src="https://static.igem.org/mediawiki/2012/3/3e/Novo_lille.jpg"
 +
    style="border:1px solid black;" cellpadding=20px width="150px">
-
<h2>Sponsored by</h2>
 
-
<table id="graa" align="center" cellpadding=10px>
 
-
<tr>
 
-
<td></td>
 
-
<td><img src="https://static.igem.org/mediawiki/2012/d/d9/Novozymes_lille.jpg"
 
-
    style="border:1px solid black;" width="150px"></td>
 
-
<td></td>
 
-
<td><img src="https://static.igem.org/mediawiki/2012/3/3e/Novo_lille.jpg"
 
-
    style="border:1px solid black;" width="150px"></td>
 
-
<td></td>
 
-
</tr>
 
 +
</td>
</table>
</table>
</html>
</html>

Latest revision as of 00:36, 27 September 2012


Welcome to Team Copenhagen 2012!!

In this years project we will produce a construct that allows cyanobacteria to emit light when exposed to darkness for an extended period of time. The advantage of using cyanobacteria over other model organisms, such as E. coli, is that cyanobacteria do not require glucose for growth, but fixate CO2 in the atmosphere. Promoters that are normally controlling genes involved in the circadian rhythm of cyanobacteria will, in our construct, be associated with a luciferase gene casette containing all the enzymes necessary for the deployment of biologically generated light. The result is a sustainable system in which cyanobacteria per day will synthesize the components necessary for the production of light during periods with light and consume them in darkness under emission of light.



Copenhagen Official Team Profile

Sponsors