Team:Uppsala University

From 2012.igem.org

(Difference between revisions)
(Created page with "<!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** --> <html> <div id="box" style="widt...")
 
(755 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
{{Uppsala_style}}
-
 
+
<html>
<html>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
<style type="text/css">
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
 
-
This is a template page. READ THESE INSTRUCTIONS.
+
#mainheader {
 +
position: absolute;
 +
top: 26px;
 +
left: 0px;
 +
width: 100%;
 +
min-width: 800px;
 +
height: 30px;
 +
background-image: url('https://static.igem.org/mediawiki/2012/a/aa/Bggrad2.png');
 +
background-repeat: repeat-x;
 +
vertical-align: middle;
 +
margin-top: auto;
 +
margin-bottom: auto;
 +
z-index: 0;
 +
display: inline;
 +
}
 +
 
 +
#maincheatsol {
 +
height: 200px;
 +
width: 0px;
 +
}
 +
 
 +
#slogan {
 +
position: absolute;
 +
top: 60px;
 +
right: 300px;
 +
}
 +
 
 +
#igemlogo {
 +
position: absolute;
 +
top: 150px;
 +
left: 14px;
 +
display: inline;
 +
text-align: center;
 +
}
 +
 
 +
#uulogo {
 +
position: absolute;
 +
top: 50px;
 +
left: 14px;
 +
display: inline;
 +
text-align: center;
 +
}
 +
 
 +
#news {
 +
overflow: auto;
 +
text-align: left;
 +
border: 1px dashed gray;
 +
border-top: none;
 +
height: 390px;
 +
padding: 0px 10px 10px 10px;
 +
vertical-align: top;
 +
font-size: 12px;
 +
}
 +
 
 +
#news hr {
 +
width: 150px;
 +
margin: 10px auto;
 +
}
 +
 
 +
#desc {
 +
text-align: left;
 +
vertical-align: top;
 +
}
 +
 
 +
#first {
 +
vertical-align: bottom;
 +
margin-left: auto;
 +
margin-right: auto;
 +
}
 +
 
 +
#second {
 +
vertical-align: top;
 +
text-align: justify;
 +
}
 +
 
 +
#more {
 +
vertical-align: top;
 +
text-align: right;
 +
padding-right: 5px;
 +
font-size: 12px;
 +
}
 +
 
 +
</style>
 +
 
 +
<script type="text/javascript">
 +
 
 +
  var _gaq = _gaq || [];
 +
  _gaq.push(['_setAccount', 'UA-33383026-1']);
 +
  _gaq.push(['_trackPageview']);
 +
 
 +
  (function() {
 +
    var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
 +
    ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
 +
    var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
 +
  })();
 +
 
 +
</script>
 +
 
 +
 
 +
<div id="mainheader">
 +
<br>
 +
<a href="/Team:Uppsala_University"><img src="https://static.igem.org/mediawiki/2012/8/8e/Uu_banner.png" height="200" alt="Team Uppsala University"></a>
</div>
</div>
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
 
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2009.igem.org/Help:Template/Examples">HERE</a>.
+
 
 +
 
 +
<div id="slogan">
 +
<img src="" alt="">
</div>
</div>
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
-->
-
You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified. PLEASE keep all of your pages within your teams namespace. 
+
 
 +
<div id="igemlogo">
 +
<a href="https://2012.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2012/1/13/Igemwhite_back.png" alt="iGEM 2012 main page" width="90"></a>
</div>
</div>
 +
 +
<div id="uulogo">
 +
<a href="http://www.uu.se/en/?languageId=1"><img src="https://static.igem.org/mediawiki/2012/1/1f/UU_logo_black.png" alt="Uppsala University" width="90"></a>
</div>
</div>
-
</html>
 
-
<!-- *** End of the alert box *** -->
+
<!--https://static.igem.org/mediawiki/2012/3/30/Igemwhite.png-->
 +
<div id="maincheatsol"></div>
 +
<!--  -->
 +
<!-- https://static.igem.org/mediawiki/igem.org/a/ac/Examplebanner.jpg -->
-
{|align="justify"
+
<br>
-
|You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
+
<table id="ctable" align="center">
-
|[[Image:Uppsala_University_logo.png|200px|right|frame]]
+
<img src="https://static.igem.org/mediawiki/2012/9/9d/Comic.png"><br>
-
|-
+
<i>... and that's how resistance is futile!</i>
-
|
+
<tr>
-
''Tell us more about your project. Give us background. Use this as the abstract of your project. Be descriptive but concise (1-2 paragraphs)''
+
<td colspan="2" valign="top">
-
|[[Image:Uppsala_University_team.png|right|frame|Your team picture]]
+
<h2>The Problem</h2>
-
|-
+
<div id="desc">
-
|
+
<p>The first half of the 20th century saw a revolution in the treatment of one of the major curses of mankind: pathogenic microorganisms. After the invention of first sulfa and later penicillin, through the fourties, fifties and sixties a large number of antibiotic drugs were quickly found. The age when many bacterial infections meant life-threatening epidemics were soon forgotten, as illnesses could now be cured by a few days with antibiotics. During the sixties and seventies, bacterial infections was largely considered to be a solved problem in the western world, and drug researchers turned to other areas. </p><p>
-
|align="center"|[[Team:Uppsala_University | Team Uppsala_University]]
+
-
|}
+
-
<!--- The Mission, Experiments --->
+
However, evolution is a more powerful force than one can imagine, and soon the bacterias got the upper hand. In later years, it has become clear that bacterial resistance is spreading at a faster rate than anyone could imagine. Between the seventies and late nineties, no new classes of antibiotics were launched, while usage of antibiotics continued at an ever increasing rate. This created an ideal enviroment for antibiotic resistance to spread. </p><p>
 +
 
 +
Today, it is estimated that, in the EU alone, 25 000 patients die yearly of multidrug resistant infections, which also increase health care costs by over 1.5 billion euro per year. Antibiotic research has been given higher priority in academic institutions over the last decade, but it is clear that drug development is and has been stalled for a long time.</p><p>
 +
 
 +
But do we really have to give up classic antibiotic drugs? Team Uppsala University 2012 begs to differ. We believe that new knowledge about bacterial regulatory mechanisms can enable us to once again turn resistant bacteria sensitive to classic antibiotics. This summer, we decided to show it.
 +
</p>
 +
</td>
 +
<td  valign="top">
 +
<h2>Achivements</h2>
 +
<div id="news">
 +
 
 +
<b>Working small RNAs!</b><br>
 +
Constructed small RNAs that can downregulate antibiotic resistance.
 +
<a href="https://2012.igem.org/Team:Uppsala_University/Translational">Read more</a>
 +
<hr>
 +
 
 +
<b>Improved existing parts</b><br>
 +
Improved standard plasmid backbones from the low copy pSB4X series.
 +
<a href="https://2012.igem.org/Team:Uppsala_University/Backbones">Read more</a>
 +
<hr>
 +
 
 +
<b>Characterized promoters</b><br>
 +
Characterized several promoters and their respective promoter strengths.
 +
<a href="https://2012.igem.org/Team:Uppsala_University/Promoters">Read more</a>
 +
<hr>
 +
 
 +
<b>Helped other teams</b><br>
 +
Our BioBricks have been requested by many iGEM teams.
 +
<a href="https://2012.igem.org/Team:Uppsala_University/Collaborations">Read more</a>
 +
<hr>
 +
 
 +
<b>New BioBricks</b><br>
 +
Constructed several new BioBricks and characterized them.
 +
<a href="https://2012.igem.org/Team:Uppsala_University/Parts">Read more</a>
 +
<hr>
 +
 
 +
<b>Gained experience</b><br>
 +
Had a great summer while working with our iGEM project.
 +
<a href="https://2012.igem.org/Team:Uppsala_University/Notebook">Read more</a>
 +
 
 +
</div>
 +
</td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>
 +
&nbsp;
 +
</td>
 +
</tr>
 +
 
 +
<br>
 +
<tr>
 +
<td id="first">
 +
<img id="topimage" src="https://static.igem.org/mediawiki/2012/9/92/Srnalogo.png" height="100">
 +
</td>
 +
<td id="first">
 +
<img id="topimage" src="https://static.igem.org/mediawiki/2012/0/05/PEL4X15_temp.png" height="100">
 +
</td>
 +
<td id="first">
 +
<img id="topimage" src="https://static.igem.org/mediawiki/2012/3/3a/Chromoproteinslogo.png" height="100">
 +
</td>
 +
</tr>
 +
 
 +
<tr>
 +
<td style="vertical-align: top">
 +
<h2>Silencing sRNA</h2>
 +
<p id="second">We have developed a modular screening system and protocol for finding silencing sRNAs against arbitrary genes. Using this, we have found strongly silencing sRNAs against a clinical antibiotic gene and lowered the minimal inhibatory concentration tenfold in resistant bacteria.
 +
</p>
 +
<p id="more"><a href="/Team:Uppsala_University/Project#sRNA">Read more...</a>
 +
</td>
 +
<td style="vertical-align: top">
 +
<h2>New backbones</h2>
 +
<p id="second">We have constructed a range of new standard low copy backbones, and variants with built-in lacIq repression for tight control of toxic genes, thermosensitivity and FRT sites for removing resistance cassettes. This work was done as it turned out that the common registry pSB4 backbones all have faulty copy number regulation, while we needed low copy backbones for out project.</p>
 +
<p id="more"><a href="/Team:Uppsala_University/Backbones">Read more...</a></p>
 +
</td>
 +
<td style="vertical-align: top">
 +
<h2>Chromoproteins</h2>
 +
<p id="second">Proteins with a visible intrinsic color are the simplest possible reporters in molecular biology. Most iGEMers are familiar with the Red Flourescent Protein (RFP), but there are many other colors available among the organisms of the world. We have characterized and submitted new chromoproteins, allowing multiplexed colorful reporters. </p>
 +
<p id="more"><a href="/Team:Uppsala_University/Chromoproteins">Read more...</a></div>
 +
</td>
 +
</tr>
 +
</table>
 +
<br>
 +
</div>
 +
</html>
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
{{Uppsala_footer}}
-
!align="center"|[[Team:Uppsala_University|Home]]
+
-
!align="center"|[[Team:Uppsala_University/Team|Team]]
+
-
!align="center"|[https://igem.org/Team.cgi?year=2012&team_name=Uppsala_University Official Team Profile]
+
-
!align="center"|[[Team:Uppsala_University/Project|Project]]
+
-
!align="center"|[[Team:Uppsala_University/Parts|Parts Submitted to the Registry]]
+
-
!align="center"|[[Team:Uppsala_University/Modeling|Modeling]]
+
-
!align="center"|[[Team:Uppsala_University/Notebook|Notebook]]
+
-
!align="center"|[[Team:Uppsala_University/Safety|Safety]]
+
-
!align="center"|[[Team:Uppsala_University/Attributions|Attributions]]
+
-
|}
+

Latest revision as of 02:25, 27 October 2012

Team Uppsala University – iGEM 2012


Team Uppsala University
-->


... and that's how resistance is futile!

The Problem

The first half of the 20th century saw a revolution in the treatment of one of the major curses of mankind: pathogenic microorganisms. After the invention of first sulfa and later penicillin, through the fourties, fifties and sixties a large number of antibiotic drugs were quickly found. The age when many bacterial infections meant life-threatening epidemics were soon forgotten, as illnesses could now be cured by a few days with antibiotics. During the sixties and seventies, bacterial infections was largely considered to be a solved problem in the western world, and drug researchers turned to other areas.

However, evolution is a more powerful force than one can imagine, and soon the bacterias got the upper hand. In later years, it has become clear that bacterial resistance is spreading at a faster rate than anyone could imagine. Between the seventies and late nineties, no new classes of antibiotics were launched, while usage of antibiotics continued at an ever increasing rate. This created an ideal enviroment for antibiotic resistance to spread.

Today, it is estimated that, in the EU alone, 25 000 patients die yearly of multidrug resistant infections, which also increase health care costs by over 1.5 billion euro per year. Antibiotic research has been given higher priority in academic institutions over the last decade, but it is clear that drug development is and has been stalled for a long time.

But do we really have to give up classic antibiotic drugs? Team Uppsala University 2012 begs to differ. We believe that new knowledge about bacterial regulatory mechanisms can enable us to once again turn resistant bacteria sensitive to classic antibiotics. This summer, we decided to show it.

Achivements

Working small RNAs!
Constructed small RNAs that can downregulate antibiotic resistance. Read more
Improved existing parts
Improved standard plasmid backbones from the low copy pSB4X series. Read more
Characterized promoters
Characterized several promoters and their respective promoter strengths. Read more
Helped other teams
Our BioBricks have been requested by many iGEM teams. Read more
New BioBricks
Constructed several new BioBricks and characterized them. Read more
Gained experience
Had a great summer while working with our iGEM project. Read more
 

Silencing sRNA

We have developed a modular screening system and protocol for finding silencing sRNAs against arbitrary genes. Using this, we have found strongly silencing sRNAs against a clinical antibiotic gene and lowered the minimal inhibatory concentration tenfold in resistant bacteria.

Read more...

New backbones

We have constructed a range of new standard low copy backbones, and variants with built-in lacIq repression for tight control of toxic genes, thermosensitivity and FRT sites for removing resistance cassettes. This work was done as it turned out that the common registry pSB4 backbones all have faulty copy number regulation, while we needed low copy backbones for out project.

Read more...

Chromoproteins

Proteins with a visible intrinsic color are the simplest possible reporters in molecular biology. Most iGEMers are familiar with the Red Flourescent Protein (RFP), but there are many other colors available among the organisms of the world. We have characterized and submitted new chromoproteins, allowing multiplexed colorful reporters.

Read more...


Sponsors






Retrieved from "http://2012.igem.org/Team:Uppsala_University"