Team:Edinburgh/Project

From 2012.igem.org

(Difference between revisions)
(Overall project)
 
(67 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
{{:Team:Edinburgh/header}}
 +
{{Team:Edinburgh/css/navigation-structure.css}}
 +
{{Team:Edinburgh/css/navigation-style.css}}
<html>
<html>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
<style type="text/css">
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
/* header edit */
-
This is a template page. READ THESE INSTRUCTIONS.
+
#project-page a{
-
</div>
+
display:block;
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
background-color: #f2f2f2;
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
+
border-top-right-radius: 10px;
-
</div>
+
border-top-left-radius: 10px;
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
}
-
You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified.  PLEASE keep all of your pages within your teams namespace. 
+
#project-page a,
-
</div>
+
#project-page a:visited{
-
</div>
+
color: #000;
 +
}
 +
#project-page a:hover{
 +
cursor: default;
 +
color: #000;
 +
}
 +
/* actual page */
 +
#page-content{
 +
background-color:#fff;
 +
/*background-image: url('https://static.igem.org/mediawiki/2012/d/de/Edi-project-bg-5.png');
 +
background-repeat: no-repeat;*/
 +
border:1px solid #ccc;
 +
}
 +
#project-abstract-video{
 +
margin-top:20px;
 +
margin-left:120px;
 +
border:1px solid #a8a8a8;
 +
padding:4px;
 +
border-radius:4px;
 +
box-shadow:0px 0px 5px #a8a8a8;
 +
background:#f2f2f2;
 +
width:560px;
 +
}
 +
</style>
</html>
</html>
-
<!-- *** End of the alert box *** -->
+
{{:Team:Edinburgh/Project/navigation}}
-
 
+
<html>
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
<div id="page-content">
-
!align="center"|[[Team:Edinburgh|Home]]
+
<div class="text">
-
!align="center"|[[Team:Edinburgh/Team|Team]]
+
<p class="normal-text">
-
!align="center"|[https://igem.org/Team.cgi?year=2012&team_name=Edinburgh Official Team Profile]
+
In the spirit of iGEM, our project’s aim is to design new biological systems that will make synthetic biology more accessible and friendly. Our team plans to achieve this by constructing a bio-electric interface, designing new selectable and counterselectable markers and characterising <i>Citrobacter freundii</i> to start a dialogue on what a synthetic-biology specific chassis should look like. <span class="intense-emphasis">For more detailed information on each of these sub-projects, refer to the links in the navigation menu on the left.</span>
-
!align="center"|[[Team:Edinburgh/Project|Project]]
+
<br /><br />
-
!align="center"|[[Team:Edinburgh/Parts|Parts Submitted to the Registry]]
+
However, if you are short for time, you may want to have a look at <span class="plainlinks"><a href="http://dl.dropbox.com/u/108285418/EdiGEM%20-%20iGEM%20Edinburgh%202012.pdf"><b>EdiGEM's Concise Project Description</b></a></span>.
-
!align="center"|[[Team:Edinburgh/Modeling|Modeling]]
+
</p>
-
!align="center"|[[Team:Edinburgh/Notebook|Notebook]]
+
<p class="h1">
-
!align="center"|[[Team:Edinburgh/Safety|Safety]]
+
Project Abstract
-
!align="center"|[[Team:Edinburgh/Attributions|Attributions]]
+
</h1>
-
|}
+
<div id="project-abstract-video">
-
 
+
<iframe class="project-abstract" width="560" height="315" src="http://www.youtube.com/embed/wnd77MsyMi4" frameborder="0" allowfullscreen></iframe>
-
 
+
</div><!-- /project-abstract-video -->
-
 
+
<p class="h2">
-
 
+
<a href="https://2012.igem.org/Team:Edinburgh/Project/Bioelectric-Interface">Bioelectric interface</a>
-
== '''Overall project''' ==
+
</p>
-
 
+
<p class="normal-text">
-
Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)
+
As part of our project we will attempt to create a bioelectric interface - a way to connect biological and electronic systems in a standardised, inducible and quantifiable way.
-
Image:Edi_Project.png
+
<br /><br />
-
 
+
To achieve our goal we will use the MtrCAB proteins (cytochromes, proteins that mediate electron transport) from <i>Shewanella oneidensis</i>. We will transform <i>E. coli</i> with these genes along with a <i>ccm</i> gene cluster (cytochrome c maturation proteins) and couple it to an inducible promoter such as the Ars or Lac promoters which are induced by arsenate or lactose/IPTG.
-
== Project Details==
+
<br /><br />
-
 
+
As a result, we should be able to obtain a system that would allow us to measure the rate of electron export in response to an input of arsenate or IPTG. Possible methods to measure electron export include measuring the transfer of electrons to an electrode with a volt meter by comparing it to a reference electrode; construction of a microbial fuel cell or the use of the ferrozine assay to measure the rate of reduction of iron (III) ions to iron (II).
-
 
+
<br /><br />
-
 
+
We are also looking at two ways of making genetically modified bacteria safer to release into the environment:
-
 
+
</p>
-
 
+
<p class="h2">
-
=== Part 2 ===
+
<a href="https://2012.igem.org/Team:Edinburgh/Project/Non-antibiotic-Markers">Alternative Selectable and counter-selectable markers</a>
-
 
+
</p>
-
 
+
<p class="normal-text">
-
 
+
Alternative to antibiotic resistance: We are investigating other ways to distinguish between the cells which have taken up the plasmid in question and those which have not in order to eliminate the need for antibiotic resistance selection. This would reduce the spreading of antibiotic resistance genes if an engineered bacterium were to be released into the environment either deliberately or by accident.
-
 
+
</p>
-
 
+
<p class="h2">
-
=== The Experiments ===
+
<a href="https://2012.igem.org/Team:Edinburgh/Project/Citrobacter-Freundii">Chassis characterization: <i>Citrobacter freundii</i></a>
-
 
+
</p>
-
 
+
<p class="normal-text">
-
 
+
We intend to characterize this 'friendly lemon bacterium' (a member of the gamma-proteobacteria, like <i>Escherichia coli</i>) in order to assess whether it would be a good chassis for cloning and gene expression within synthetic biology and beyond. We want to see what it can offer to this field to assess whether there are some new things it can do, or can do better than <i> E. coli </i>, the legacy chassis. We want to start a dialogue about what a synthetic biology-specific chassis should look like, what it should be able to do and what should be known about it before it could be considered a good alternative for the currently existing chassis.
-
 
+
<br /><br />
-
=== Part 3 ===
+
We also aim to characterize various criteria which would have to be known in order for researchers to start using it as a novel chassis. In addition to characterizing its growth requirements and BioBrick compatibility, we hope to sequence its genome to gain more insight into its metabolic pathways and novel genes.
-
 
+
<br /><br />
-
 
+
Finally, we want to assess whether public opinion would favour the less known but safer <i>Citrobacter freundii</i> over <i>Escherichia coli</i>, which may have a bad reputation due to its association with disease, sewage and ability to become pathogenic if exposed to wild type strains.
-
 
+
</p>
-
 
+
</div><!-- /text -->
-
== Results ==
+
</div><!-- /page-content -->
 +
</div><!-- /page-middle -->
 +
</html>

Latest revision as of 18:50, 26 October 2012

In the spirit of iGEM, our project’s aim is to design new biological systems that will make synthetic biology more accessible and friendly. Our team plans to achieve this by constructing a bio-electric interface, designing new selectable and counterselectable markers and characterising Citrobacter freundii to start a dialogue on what a synthetic-biology specific chassis should look like. For more detailed information on each of these sub-projects, refer to the links in the navigation menu on the left.

However, if you are short for time, you may want to have a look at EdiGEM's Concise Project Description.

Project Abstract

Bioelectric interface

As part of our project we will attempt to create a bioelectric interface - a way to connect biological and electronic systems in a standardised, inducible and quantifiable way.

To achieve our goal we will use the MtrCAB proteins (cytochromes, proteins that mediate electron transport) from Shewanella oneidensis. We will transform E. coli with these genes along with a ccm gene cluster (cytochrome c maturation proteins) and couple it to an inducible promoter such as the Ars or Lac promoters which are induced by arsenate or lactose/IPTG.

As a result, we should be able to obtain a system that would allow us to measure the rate of electron export in response to an input of arsenate or IPTG. Possible methods to measure electron export include measuring the transfer of electrons to an electrode with a volt meter by comparing it to a reference electrode; construction of a microbial fuel cell or the use of the ferrozine assay to measure the rate of reduction of iron (III) ions to iron (II).

We are also looking at two ways of making genetically modified bacteria safer to release into the environment:

Alternative Selectable and counter-selectable markers

Alternative to antibiotic resistance: We are investigating other ways to distinguish between the cells which have taken up the plasmid in question and those which have not in order to eliminate the need for antibiotic resistance selection. This would reduce the spreading of antibiotic resistance genes if an engineered bacterium were to be released into the environment either deliberately or by accident.

Chassis characterization: Citrobacter freundii

We intend to characterize this 'friendly lemon bacterium' (a member of the gamma-proteobacteria, like Escherichia coli) in order to assess whether it would be a good chassis for cloning and gene expression within synthetic biology and beyond. We want to see what it can offer to this field to assess whether there are some new things it can do, or can do better than E. coli , the legacy chassis. We want to start a dialogue about what a synthetic biology-specific chassis should look like, what it should be able to do and what should be known about it before it could be considered a good alternative for the currently existing chassis.

We also aim to characterize various criteria which would have to be known in order for researchers to start using it as a novel chassis. In addition to characterizing its growth requirements and BioBrick compatibility, we hope to sequence its genome to gain more insight into its metabolic pathways and novel genes.

Finally, we want to assess whether public opinion would favour the less known but safer Citrobacter freundii over Escherichia coli, which may have a bad reputation due to its association with disease, sewage and ability to become pathogenic if exposed to wild type strains.