Team:USP-UNESP-Brazil/Project

From 2012.igem.org

(Difference between revisions)
(Associative Memory Network Using Bacteria)
 
(5 intermediate revisions not shown)
Line 6: Line 6:
=== Plug&Play Plasmid ===
=== Plug&Play Plasmid ===
-
{{:Team:USP-UNESP-Brazil/Templates/LImage | image=Plugnplay.jpg | caption= | size=200px}}
+
{{:Team:USP-UNESP-Brazil/Templates/LImage | image=Plugnplay.jpg | caption=Plug the PCR and play your gene in the bacteria! | size=300px}}
The synthetic biology fields needs techniques to produce biological standardize parts in a high-throughput manner, which can later be used for modifying/hacking systems. To help in this task we developed a project that aims to build a prototype for a machine called Plug&Play, it express any protein helped by the Cre-Recombinase system. The Plug&Play plasmid has a mutated recombination site (lox71) recognized by the Cre-recombinase enzyme. The Cre recombination mechanism will strategically inserts a PCR-amplified DNA at the lox71 site, and readily express the protein once the receptor plasmid already posses all the necessary protein expression machinery. The plasmid has also a resistance gene to ampicillin that maintains it inside the cell as long as the antibiotic is applied in the culture medium. This is a high-throughput system for expressing proteins that allows putative (or new build) genes prospection, it was created for being an open source technology that any laboratory/hacker can use for screening candidate genes libraries.
The synthetic biology fields needs techniques to produce biological standardize parts in a high-throughput manner, which can later be used for modifying/hacking systems. To help in this task we developed a project that aims to build a prototype for a machine called Plug&Play, it express any protein helped by the Cre-Recombinase system. The Plug&Play plasmid has a mutated recombination site (lox71) recognized by the Cre-recombinase enzyme. The Cre recombination mechanism will strategically inserts a PCR-amplified DNA at the lox71 site, and readily express the protein once the receptor plasmid already posses all the necessary protein expression machinery. The plasmid has also a resistance gene to ampicillin that maintains it inside the cell as long as the antibiotic is applied in the culture medium. This is a high-throughput system for expressing proteins that allows putative (or new build) genes prospection, it was created for being an open source technology that any laboratory/hacker can use for screening candidate genes libraries.
=== Associative Memory Network Using Bacteria ===
=== Associative Memory Network Using Bacteria ===
 +
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=Memassonet.jpg | caption=Can Bacteria store a systemic memory, like neurons in a neuronal network? | size=300px}}
Memory storage in biological systems has a critical role in biotechnology
Memory storage in biological systems has a critical role in biotechnology
development. A systemic way of storing a specific memory that can be recovered and used
development. A systemic way of storing a specific memory that can be recovered and used
Line 20: Line 21:
In this project we propose to build a communication network using ''E.coli''
In this project we propose to build a communication network using ''E.coli''
populations with associative memory that behaves like a Hopfield Model.
populations with associative memory that behaves like a Hopfield Model.
-
Modified ''E.coli'' populations will be generated and physically isolated from each other, the communication will happens through Quorum Sensing Substances (QSS). These QSS will produce
+
Modified ''E.coli'' populations will be generated and physically isolated from each other, the communication will happens through Quorum Sensing Molecules (QSM). These QSM will produce
inhibition or excitation of the pre-determined populations,  the amount of excitation will be measure using
inhibition or excitation of the pre-determined populations,  the amount of excitation will be measure using
GFP fluorescence. The objective is to achieve a specific complete pattern represented by
GFP fluorescence. The objective is to achieve a specific complete pattern represented by

Latest revision as of 03:14, 27 September 2012