Team:USP-UNESP-Brazil/Associative Memory/Introduction

From 2012.igem.org

(Difference between revisions)
(Background)
(Application)
Line 15: Line 15:
===Application===
===Application===
-
In addition to be one of the first Hopfield Network model made in vivo, this project shows different lineages of bacteria communicating with each other, establishing balance through their systemic memory. This could be useful in the production of bioproducts, such as biofuels - for instance, a biosystem producing some compound inside a reactor could regulate itself according to specific parameter changes, such as temperature or nutrient concentration - it would perform that by communicating within its network and restoring the pattern stored in its ystemic memory. In the future, self-controlled biosystems will be possible, cheap and ecologically friendly alternatives for the industry.
+
In addition to be one of the first Hopfield Network models made in vivo, this project shows different lineages of bacteria communicating with each other, establishing balance through their systemic memory. This could be useful in the production of bioproducts, such as biofuels - for instance, a biosystem producing some compound inside a reactor could regulate itself according to specific parameter changes, such as temperature or nutrient concentration - it would perform that by communicating within its network and restoring the pattern stored in its systemic memory. In the future, self-controlled biosystems will be possible, cheap and ecologically friendly alternatives for the industry.

Revision as of 15:34, 25 September 2012