Team:UC Davis/Project

From 2012.igem.org

(Difference between revisions)
Line 1,193: Line 1,193:
<h1>Project Overview</h1>
<h1>Project Overview</h1>
<article>
<article>
-
The Pacific Gyre patch, 100 million tons of floating trash, is currently an incurable illness to our planet. 90% of oceanic pollution is plastic, 80% of which comes from land, the other 20% from vessels. The waste in the ocean ranges from nets, bottlecaps, to plastic bottles etc. Marine animals can mistake the plastic debris as food, but since they cannot digest plastic they can starve. Plastic in the ocean can be photodegraded into smaller molecules that are then ingested as a form of toxins that accelerates the process of biomagnifications.
+
Environment-friendly plastic degradation has been a challenging and daunting task for our society. Plastic, one of the greatest discoveries of the 20th century is notoriously difficult to degrade or recycle in an efficient way. The overutilization of plastic and lack of integrated methods for its recycling has created major environmental threats that we are currently facing and will continue at a greater magnitude in the future. The Pacific Gyre patch, 100 million tons of floating trash that consists of nets, bottles, bags, among other more obscure items is such an example. Plastic poses a serious threat to land and marine life, as animals often mistake it for food, or they consume byproducts that result from its partial degradation and are often toxic to them. Interestingly, collisions with floating or submerged waste objects has caused 269 boating accidents, resulting in 15 deaths, 116 injuries and 3 million dollars in damage, although this numbers are trivial when compared to the billion dollar catastrophes and uncertain future that this environmental hazard imposes to our society.
-
<br><br>From an economic standpoint, collisions with floating or submerged waste objects has caused 269 boating accidents, resulting in 15 deaths, 116 injuries and 3 million dollars in damage.
+
<br><br>The Polyethylene terephthalate (PET) is a commonly used plastic due to its durability and molecular stability, but its high molecular weight and hydrophobicity also make it one of the hardest plastics to degrade. Although the PET recycling rate has increased from 7% to 30% in the last few years, a majority of the plastic is still dumped in landfills and continues to pollute the environment. Most plastics are made from petroleum, oil or natural gas, and a variety of chemicals that are toxic to humans (including ethylene glycol). Phthalates and Bisphenol-A (BPA) are the most common types of chemicals used to make plastic materials. Phthalates have been known to cause diseases related to cancer or hormonal imbalances. BPA is often known to leak from bottles and migrate into liquids and foods it comes into contact with. Within the landfills, rainwater can trickle through the trash, creating toxic leachate. The leachate carries microorganisms and toxic chemicals into drinking water sources. Instead of approaching the problem by reducing the amount of input coming in, most firms are simply increasing the amount of bioplastic. These “biobottles” are only 30% biodegradable, meaning that there is still an influx of non-biodegradable plastic coming into our environment.  
-
<br><br>The Polyethylene terephthalate (PET) is a commonly used plastic due to its durability and molecular stability, but its high molecular weight and hydrophobicity also make it one of the hardest plastics to degrade. Although the PET recycling rate has increased from 7% to 30% in the last few years, a majority of the plastic is still dumped in landfills and continues to pollute the environment. Most plastics are made from petroleum, oil or natural gas, and a variety of chemicals that are toxic to humans (including ethylene glycol). Phthalates and Bisphenol-A (BPA) are the most common types of chemicals used to make plastic materials. Phthalates have been known to cause diseases related to cancer or hormonal imbalances. BPA is
+
<br><br>This year, the UC Davis IGEM team aspires to use synthetic biology techniques to create a microbial strain that has the capacity to metabolize PET and degrade it to non-toxic compounds. To achieve this outcome, we utilize targeted bioengineering and directed evolution techniques on the E. coli MG1655 strain, currently one of the most well-studied organisms. More specifically, the goals of our project are:
-
often known to leak from bottles and migrate into liquids and foods it comes into contact with. Within the landfills, rainwater can trickle through the trash, creating toxic leachate. The leachate carries microorganisms and toxic chemicals into drinking water sources.
+
-
<br><br>Instead of approaching the problem by reducing the amount of input coming in, most firms are simply
+
<br><br>1. Targeted bioengineering of <i>E. coli</i> MG1655 to utilize PET as a carbon source. We seek to this by introducing a couple different modules to the strain. The first module encodes a cutinase gene which has been found to degrade PET into ethylene glycol and terephthalic acid. The second encodes the first two enzymes in a pathway that has been found to feed ethylene glycol into the TCA cycle.
-
increasing the amount of bioplastic. These “biobottles” are only 30% biodegradable, meaning that there is still an influx of non-biodegradable plastic coming into our environment. Using synthetic biology our company is not only taking non biodegradable plastic and reducing it to a feedstock for cells, but harvesting the components that can be then used to create more plastic.
+
 
 +
<br><br>2. Rational protein engineering to increase the enzymatic activity of cutinase to degrade PET.
 +
 
 +
<br><br>3. Directed evolution of the PET degradation pathway to increase its efficiency of PET metabolism in E. coli cultures.
</article></div>
</article></div>

Revision as of 06:05, 1 October 2012

Team:UC Davis - 2012.igem.org

UCDavis iGEM Tweets

Our Sponsors

Project Overview

Environment-friendly plastic degradation has been a challenging and daunting task for our society. Plastic, one of the greatest discoveries of the 20th century is notoriously difficult to degrade or recycle in an efficient way. The overutilization of plastic and lack of integrated methods for its recycling has created major environmental threats that we are currently facing and will continue at a greater magnitude in the future. The Pacific Gyre patch, 100 million tons of floating trash that consists of nets, bottles, bags, among other more obscure items is such an example. Plastic poses a serious threat to land and marine life, as animals often mistake it for food, or they consume byproducts that result from its partial degradation and are often toxic to them. Interestingly, collisions with floating or submerged waste objects has caused 269 boating accidents, resulting in 15 deaths, 116 injuries and 3 million dollars in damage, although this numbers are trivial when compared to the billion dollar catastrophes and uncertain future that this environmental hazard imposes to our society.

The Polyethylene terephthalate (PET) is a commonly used plastic due to its durability and molecular stability, but its high molecular weight and hydrophobicity also make it one of the hardest plastics to degrade. Although the PET recycling rate has increased from 7% to 30% in the last few years, a majority of the plastic is still dumped in landfills and continues to pollute the environment. Most plastics are made from petroleum, oil or natural gas, and a variety of chemicals that are toxic to humans (including ethylene glycol). Phthalates and Bisphenol-A (BPA) are the most common types of chemicals used to make plastic materials. Phthalates have been known to cause diseases related to cancer or hormonal imbalances. BPA is often known to leak from bottles and migrate into liquids and foods it comes into contact with. Within the landfills, rainwater can trickle through the trash, creating toxic leachate. The leachate carries microorganisms and toxic chemicals into drinking water sources. Instead of approaching the problem by reducing the amount of input coming in, most firms are simply increasing the amount of bioplastic. These “biobottles” are only 30% biodegradable, meaning that there is still an influx of non-biodegradable plastic coming into our environment.

This year, the UC Davis IGEM team aspires to use synthetic biology techniques to create a microbial strain that has the capacity to metabolize PET and degrade it to non-toxic compounds. To achieve this outcome, we utilize targeted bioengineering and directed evolution techniques on the E. coli MG1655 strain, currently one of the most well-studied organisms. More specifically, the goals of our project are:

1. Targeted bioengineering of E. coli MG1655 to utilize PET as a carbon source. We seek to this by introducing a couple different modules to the strain. The first module encodes a cutinase gene which has been found to degrade PET into ethylene glycol and terephthalic acid. The second encodes the first two enzymes in a pathway that has been found to feed ethylene glycol into the TCA cycle.

2. Rational protein engineering to increase the enzymatic activity of cutinase to degrade PET.

3. Directed evolution of the PET degradation pathway to increase its efficiency of PET metabolism in E. coli cultures.

References

insert text

Retrieved from "http://2012.igem.org/Team:UC_Davis/Project"