Team:Tokyo Tech/Experiment/PHB2

(Difference between revisions)
 Revision as of 16:35, 26 October 2012 (view source)Takuo (Talk | contribs) (→D Make purified P(3HB) sheets)← Older edit Revision as of 19:12, 26 October 2012 (view source)Takuo (Talk | contribs) (→D Make purified P(3HB) sheets)Newer edit → Line 4: Line 4:
- =D Make purified P(3HB) sheets= + =Making purified P(3HB) sheets= We made P(3HB) sheets. To make the sheets, we cultured E.coli JM109 in erlenmeyer flasks at 37°C for 72h. Contact angle is an indicator to represent the strength of the water-repellent. The angle shows the physical properties, especially surface tension. We made P(3HB) sheets. To make the sheets, we cultured E.coli JM109 in erlenmeyer flasks at 37°C for 72h. Contact angle is an indicator to represent the strength of the water-repellent. The angle shows the physical properties, especially surface tension.

bar

Making purified P(3HB) sheets

We made P(3HB) sheets. To make the sheets, we cultured E.coli JM109 in erlenmeyer flasks at 37°C for 72h. Contact angle is an indicator to represent the strength of the water-repellent. The angle shows the physical properties, especially surface tension. When contact angle of sheets is larger than 90°, from Young equation, the sheets would have more strong water-repellent by increasing real surface area. Contact angle of P(3HB) sheets is about 100° from literature data. [Protocol]

Fig2-2-4-4-1, P(3HB) sheet

Protocol

1. Move dried cells into an airtight container.

2. Add chloroform, at rate of 2mg dried cells for 1 ml chloroform.

3. Incubate and stir the chloroform solution for more than 72 hrs at 20~25℃.

4. Filter the chloroform solution.

5. Concentrate by evaporation.

6. Dropwise the solution in methanol.

7. Filter the polymer in methanol, and dry the polymer.

8. Add a little chloroform to dissolve the polymer.

9. Poured the chloroform solution into a Petri dish.

10. Dry at room temperature.