Team:Stanford-Brown/Test

From 2012.igem.org

(Difference between revisions)
 
(46 intermediate revisions not shown)
Line 71: Line 71:
     font-weight: 300;
     font-weight: 300;
     color: white;
     color: white;
-
   width: 975px;
+
   width: 1025px;
   float: left;
   float: left;
   margin: 0 0 3em 0;
   margin: 0 0 3em 0;
-
   margin-left: -5px;
+
   margin-left: -30px;
   list-style: none;
   list-style: none;
   background-color: #A32C2C;
   background-color: #A32C2C;
Line 97: Line 97:
   }
   }
-
/*--- DROPDOWN ---*/
+
/*--Dropdown stuff. Thanks to csswizardry.com--*/
 +
 
#nav ul{
#nav ul{
-
background:#fff; /* Adding a background makes the dropdown work properly in IE7+. Make this as close to your page's background as possible (i.e. white page == white background). */
+
background:#fff;  
-
background:rgba(255,255,255,0); /* But! Let's make the background fully transparent where we can, we don't actually want to see it if we can help it... */
+
background:rgba(255,255,255,0);
 +
left:-9999px; /* Hide off-screen */
list-style:none;
list-style:none;
position:absolute;
position:absolute;
-
left:-9999px; /* Hide off-screen when not needed (this is more accessible than display:none;) */
 
}
}
#nav ul li{
#nav ul li{
padding-top:1px; /* Introducing a padding between the li and the a give the illusion spaced items */
padding-top:1px; /* Introducing a padding between the li and the a give the illusion spaced items */
float:none;
float:none;
 +
        box-shadow: 0px 1px 3px 1px #222;
}
}
#nav ul a{
#nav ul a{
Line 114: Line 116:
#nav li:hover ul{ /* Display the dropdown on hover */
#nav li:hover ul{ /* Display the dropdown on hover */
left:-26px; /* Bring back on-screen when needed */
left:-26px; /* Bring back on-screen when needed */
-
top:32px;
+
top:38px;
}
}
#nav li:hover a{ /* These create persistent hover states, meaning the top-most link stays 'hovered' even when your cursor has moved down the list. */
#nav li:hover a{ /* These create persistent hover states, meaning the top-most link stays 'hovered' even when your cursor has moved down the list. */
-
background:#000;
+
background:#A32C2C;
 +
        box-shadow: 0px 1px 3px 1px #222;
}
}
#nav li:hover ul a{ /* The persistent hover state does however create a global style for links even before they're hovered. Here we undo these effects. */
#nav li:hover ul a{ /* The persistent hover state does however create a global style for links even before they're hovered. Here we undo these effects. */
text-decoration:none;
text-decoration:none;
-
}
 
-
#nav li:hover ul li a:hover{ /* Here we define the most explicit hover states--what happens when you hover each individual link. */
 
-
background:#333;
 
}
}
-
/*-end new stuff-*/
+
/*-end dropdown-*/
   #border-top {
   #border-top {
Line 151: Line 151:
     border-radius: 5px 5px 0px 0px;
     border-radius: 5px 5px 0px 0px;
     box-shadow: 0px -2px 6px 2px #222;
     box-shadow: 0px -2px 6px 2px #222;
-
     //background: url(img/planets.png) no-repeat;
+
     background: url(https://static.igem.org/mediawiki/2012/5/52/Planets.png) no-repeat;
   }
   }
/*  #top-panel::after {
/*  #top-panel::after {
Line 165: Line 165:
   #bottom-panel {
   #bottom-panel {
     background-color: #fff;
     background-color: #fff;
-
    height: 370px;
 
     width: 975px;
     width: 975px;
     margin-left: -5px;
     margin-left: -5px;
Line 196: Line 195:
     margin-left: 40px;
     margin-left: 40px;
     color: #6c6c6c;
     color: #6c6c6c;
-
     margin-top: -5px;
+
     margin-top: 50px;
   }
   }
   #abs-text {
   #abs-text {
-
     margin-top: 10px;
+
     margin-top: 30px;
     font-weight: 300;
     font-weight: 300;
     text-align: left;
     text-align: left;
Line 208: Line 207:
     margin-left: 40px;
     margin-left: 40px;
   }
   }
-
  .l-triangle-top {
+
/*  .l-triangle-top {
     border-color: #A32C2C transparent transparent;
     border-color: #A32C2C transparent transparent;
     border-style:solid;
     border-style:solid;
Line 218: Line 217:
     top: -93px;
     top: -93px;
     left: -27px;
     left: -27px;
 +
    z-index: 0;
 +
   }
   }
   .l-triangle-bottom {
   .l-triangle-bottom {
Line 229: Line 230:
     top: -93px;
     top: -93px;
     left: -69px;
     left: -69px;
 +
    z-index: 0;
 +
   }
   }
 +
 +
*/
   .accomps {
   .accomps {
     font-family: "Helvetica Neue";
     font-family: "Helvetica Neue";
-
     margin-top: -60px;
+
     margin-top: -20px;
     margin-left: 35px;
     margin-left: 35px;
 +
    margin-bottom: 20px;
     background: #fff;
     background: #fff;
   width: 290px;
   width: 290px;
-
  height: 315px;
 
     border-radius: 5px;
     border-radius: 5px;
     border:1px solid #aaa;
     border:1px solid #aaa;
Line 257: Line 262:
   #proj-panel {
   #proj-panel {
     background-color: #fff;
     background-color: #fff;
-
     height: 500px;
+
     height: 400px;
     width: 975px;
     width: 975px;
     margin-left: -5px;
     margin-left: -5px;
Line 316: Line 321:
<div id="border-top"></div>   
<div id="border-top"></div>   
<ul id="nav">
<ul id="nav">
 +
<li style="margin-left: 90px;"><a href="#">HOME</a>
 +
</li>
<li><a href="#">HELL CELL</a>
<li><a href="#">HELL CELL</a>
<ul>
<ul>
Line 322: Line 329:
<li><a href="#">Cold</a></li>
<li><a href="#">Cold</a></li>
<li><a href="#">Dessication</a></li>
<li><a href="#">Dessication</a></li>
 +
<li><a href="#">Base</a></li>
 +
<li><a href="#">Biobricks</a></li>
</ul>
</ul>
</li>
</li>
Line 327: Line 336:
<li><a href="#">BIOMINING</a>
<li><a href="#">BIOMINING</a>
<ul>
<ul>
-
<li><a href="#">1</a></li>
+
<li><a href="#">Introduction</a></li>
-
<li><a href="#">2</a></li>
+
<li><a href="#">Harvesting</a></li>
-
<li><a href="#">3</a></li>
+
<li><a href="#">Biobricks</a></li>
-
<li><a href="#">4</a></li>
+
</ul>
</ul>
</li>
</li>
<li><a href="#">VENUS LIFE</a>
<li><a href="#">VENUS LIFE</a>
<ul>
<ul>
-
<li><a href="#">1</a></li>
+
<li><a href="#">Introduction</a></li>
-
<li><a href="#">2</a></li>
+
<li><a href="#">Venusian Atmosphere</a></li>
-
<li><a href="#">3</a></li>
+
<li><a href="#">Biosensing</a></li>
-
<li><a href="#">4</a></li>
+
<li><a href="#">Suspension Chamber</a></li>
 +
<li><a href="#">Modeling</a></li>
 +
<li><a href="#">Biobricks</a></li>
</ul>
</ul>
</li>
</li>
Line 344: Line 354:
<li><a href="#">OUTREACH</a>
<li><a href="#">OUTREACH</a>
<ul>
<ul>
-
<li><a href="#">1</a></li>
+
<li><a href="#">Cal Academy of Sciences</a></li>
-
<li><a href="#">2</a></li>
+
<li><a href="#">Maker Faire</a></li>
-
<li><a href="#">3</a></li>
+
<li><a href="#">Transit of Venus</a></li>
-
<li><a href="#">4</a></li>
+
<li><a href="#">Carl Zimmer</a></li>
 +
<li><a href="#">iGEM Memes</a></li>
</ul>
</ul>
</li>
</li>
<li><a href="#">SAFETY</a>
<li><a href="#">SAFETY</a>
-
<ul>
 
-
<li><a href="#">1</a></li>
 
-
<li><a href="#">2</a></li>
 
-
<li><a href="#">3</a></li>
 
-
<li><a href="#">4</a></li>
 
-
</ul>
 
</li>
</li>
<li><a href="#">HUMAN PRACTICES</a>
<li><a href="#">HUMAN PRACTICES</a>
<ul>
<ul>
-
<li><a href="#">1</a></li>
+
<li><a href="#">Patent Guide</a></li>
-
<li><a href="#">2</a></li>
+
<li><a href="#">Patent Ethics</a></li>
-
<li><a href="#">3</a></li>
+
<li><a href="#">Terraform Ethics</a></li>
-
<li><a href="#">4</a></li>
+
</ul>
</ul>
</li>
</li>
-
<li><a href="#">THE TEAM</a>
+
<li><a href="#">ABOUT US</a>
<ul>
<ul>
-
<li><a href="#">1</a></li>
+
<li><a href="#">The Team</a></li>
-
<li><a href="#">2</a></li>
+
<li><a href="#">Sponsors</a></li>
-
<li><a href="#">3</a></li>
+
<li><a href="#">Contact</a></li>
-
<li><a href="#">4</a></li>
+
</ul>
</ul>
</li>
</li>
 +
<!--
 +
<li><a href="http://www.facebook.com/pages/Stanford-Brown-iGEM/166210643442328"><img src="https://static.igem.org/mediawiki/2012/1/1d/Facebook_sb2012.png" height="27px" style="margin-top: 4px; margin-left: 20px; padding-left: -8px;"/></a><a href="http://twitter.com/Brown_iGEM" height="27px">
 +
</li><li><img src="https://static.igem.org/mediawiki/2012/2/26/Twitter_sb2012.png" href="http://twitter.com/Brown_iGEM" height="27px" style="margin-top: 4px; margin-left: 20px;"/></a></li>
 +
--!>
-
<li>FOLLOW US:</li>
 
-
<li><img src="img/facebook.png" href="#" height="27px" style="margin-top: 4px; padding-left: -8px;"/><img src="img/twitter.png" href="#" height="27px" style="margin-top: 4px; margin-left: 5px;"/></li>
 
</ul>
</ul>
-
  <div class="l-triangle-top"></div>
+
<!--  <div class="l-triangle-top"></div>
-
   <div class="l-triangle-bottom"></div>
+
   <div class="l-triangle-bottom"></div>--!>
-
  <div class="r-triangle-top"></div>
+
-
  <div class="r-triangle-bottom"></div>
+
    
    
<div id="border-bottom"></div>
<div id="border-bottom"></div>
Line 395: Line 398:
             <span style="float: left;">
             <span style="float: left;">
               <p id="abs-text">
               <p id="abs-text">
-
                 Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?"  The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions in situ. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.
+
                 Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?"  The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions <i>in situ</i>. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.
               </p>
               </p>
             </span>
             </span>
Line 404: Line 407:
             <div style="margin-top:15px; text-align:center; font-weight: 600; font-size: 18px;">ACCOMPLISHMENTS</div>
             <div style="margin-top:15px; text-align:center; font-weight: 600; font-size: 18px;">ACCOMPLISHMENTS</div>
               <ul>
               <ul>
-
                <li>Submitted 12 Biobricks</li>
 
-
                <li>Showed successful resistance to cold and radiation for the Hell Cell</li>   
 
-
                <li>Created successful remote biosensor for Venus Life</li>   
 
-
                <li>Demonstrated successful flagellar mount for Biomining</li> 
 
-
                <li>Collaborated with the California Academy of Science</li>   
 
-
                <li>Features in WIRED</li> 
 
-
                <li>Wrote and released an iGEM Gene Patent Guide and iGEM Review of Gene Patent Ethics</li> 
 
-
                <li>Started iGEM Memes</li> 
 
               </ul>
               </ul>
             </div>
             </div>
Line 424: Line 419:
       <tr>
       <tr>
         <td>
         <td>
-
           <div class="feature"><img src="img/hell.png" width="281"/>
+
           <div class="feature"><img src="https://static.igem.org/mediawiki/2012/5/5a/HellCell.png" width="281"/>
             <p class="brief">Surviving in the harsh conditions of space is not easy for an organism.  Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey.  We hope to equip our organisms with the ability to live and thrive in space, and maybe even Venus!
             <p class="brief">Surviving in the harsh conditions of space is not easy for an organism.  Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey.  We hope to equip our organisms with the ability to live and thrive in space, and maybe even Venus!
             </p>   
             </p>   
Line 430: Line 425:
         </td>   
         </td>   
         <td>
         <td>
-
           <div class="feature"><img src="img/venus.png" width="281"/>
+
           <div class="feature"><img src="https://static.igem.org/mediawiki/2012/d/dc/Venus.png" width="281"/>
             <p class="brief">The surface of Venus is harsh and unforgiving.  However, research suggests that there may be layers of its atmosphere that are more temperate.  We aim to see whether or not it is possible for bacteria to survive and replicate in an aerosolized environment, and then put our Hell Cell to the test!
             <p class="brief">The surface of Venus is harsh and unforgiving.  However, research suggests that there may be layers of its atmosphere that are more temperate.  We aim to see whether or not it is possible for bacteria to survive and replicate in an aerosolized environment, and then put our Hell Cell to the test!
             </p>   
             </p>   
Line 436: Line 431:
         </td>
         </td>
         <td>
         <td>
-
           <div class="feature"><img src="img/biomining.png" width="281" />
+
           <div class="feature"><img src="https://static.igem.org/mediawiki/2012/6/60/Biomining.png" width="281" />
             <p class="brief">If we are to colonize space, we are going to need rare metals for materials. But bringing the heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us!
             <p class="brief">If we are to colonize space, we are going to need rare metals for materials. But bringing the heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us!
             </p>
             </p>

Latest revision as of 02:59, 29 September 2012

THE TRANSIT OF
SYNTHETIC
ASTROBIOLOGY
ABSTRACT

Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?" The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions in situ. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.

ACCOMPLISHMENTS

Surviving in the harsh conditions of space is not easy for an organism. Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey. We hope to equip our organisms with the ability to live and thrive in space, and maybe even Venus!

The surface of Venus is harsh and unforgiving. However, research suggests that there may be layers of its atmosphere that are more temperate. We aim to see whether or not it is possible for bacteria to survive and replicate in an aerosolized environment, and then put our Hell Cell to the test!

If we are to colonize space, we are going to need rare metals for materials. But bringing the heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us!