Team:Slovenia/ImplementationHepatitisC

From 2012.igem.org

(Difference between revisions)
Line 398: Line 398:
<img src="https://static.igem.org/mediawiki/2012/8/8e/Svn12_implementation_hepatitis_c_fig1.png"></img>
<img src="https://static.igem.org/mediawiki/2012/8/8e/Svn12_implementation_hepatitis_c_fig1.png"></img>
<p><b>Figure 1.  Therapy of hepatitis C by microencapsulated cells which can be regulated to produce and release therapeutic proteins into the liver tissue.</b></p>
<p><b>Figure 1.  Therapy of hepatitis C by microencapsulated cells which can be regulated to produce and release therapeutic proteins into the liver tissue.</b></p>
 +
<img src="https://static.igem.org/mediawiki/2012/f/f2/Svn12_implementation_hepatitis_c_fig2.png"></img>
 +
<p><b>Figure 2. Scheme of the constructs for the regulated therapy of hepatitis C with interferon alpha (IFN-α) and hepatocyte growth factor (HGF).</b> Each of the therapeutic effector is released in equimolar amount to the autoactivator.</p>
<h2 style="color:grey;">References</h2>
<h2 style="color:grey;">References</h2>

Revision as of 11:33, 26 September 2012


Hepatitis C

We designed a device for the therapy of hepatitis C, composed of microencapsulated mammalian cells that include a genetic bistable toggle switch with a positive feedback loop, where in one state the cells produce interferon alpha (IFN-α) as the antiviral effector and in the second state they produce hepatocyte growth factor (HGF) to promote liver regeneration.

A pharmacokinetic model demonstrated that if the device is implanted into the liver it results in higher levels of IFN-α within the liver than systemically. More importantly, this type of application avoids the spikes of high IFN-α concentration that occur in treatment with IFN-α injections. This should decrease the severity of side effects of IFN-α experienced by a high percentage of patients.

We estimated, based on the detection of IFN-α produced by HEK293 cells, that sufficient quantities of the therapeutic protein could be produced by the amount of microencapsulated cells feasible in a real therapeutic application.

Figure 1. Therapy of hepatitis C by microencapsulated cells which can be regulated to produce and release therapeutic proteins into the liver tissue.

Figure 2. Scheme of the constructs for the regulated therapy of hepatitis C with interferon alpha (IFN-α) and hepatocyte growth factor (HGF). Each of the therapeutic effector is released in equimolar amount to the autoactivator.

References

Banfi, A., von Degenfeld, G., Gianni-Barrera, R., Reginato, S., Merchant, M.J., McDonald, D.M., and Blau, H.M. (2012) Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. FASEB J. 26, 2486-2497.

Ortiz, L.A., Dutreil, M., Fattman, C., Pandey, A.C., Torres, G., Go, K., and Phinney, D.G. (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. U S A 104, 11002-11007.

Szymczak, A.L., Workman, C.J., Wang, Y., Vignali, K.M., Dilioglou, S., Vanin, E.F., Vignali D.A. (2004) Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589-94.


Next: Ischaemic heart disease >>