Team:Carnegie Mellon/Hom-Introduction
From 2012.igem.org
(Created page with "{{:Team:Carnegie_Mellon/Templates/Header}} <html> <!-- Nav Bar --> <ul class="sf-menu sf-navbar"> <li class="current" style ='width: 193px'> <a href="http://2012.igem.o...") |
|||
Line 124: | Line 124: | ||
<div class = "main_content"> | <div class = "main_content"> | ||
- | + | <h1> An Introduction to Promoters</h1> | |
- | An Introduction to Promoters</h1> | + | <p> |
Promoters are upstream sequences that regulate transcription. Promoters are usually short sequences and act as binding sites for a variety of different RNA polymerases. Promoters have different binding affinities based on their sequence and can be characterized in a matter of different ways. Our project looks to measure some of these properties using fluorescence measurements. In our case, we are characterizing promoters that bind to RNA polymerase from the T7 phage. The T7 RNA polymerase binds to its promoter very tightly and produces a high amount of expression. The lac operator is a short sequence that binds to the LacI repressor, which prevents transcription. The LacI protein responds to lactose in the cell. Lactose analogs have been made which are not consumed by E. coli and "turn on" the gene of interest. Our promoters have different affinities to the T7 RNA polymerase and the LacI repressor and therefore have different measurable properties. | Promoters are upstream sequences that regulate transcription. Promoters are usually short sequences and act as binding sites for a variety of different RNA polymerases. Promoters have different binding affinities based on their sequence and can be characterized in a matter of different ways. Our project looks to measure some of these properties using fluorescence measurements. In our case, we are characterizing promoters that bind to RNA polymerase from the T7 phage. The T7 RNA polymerase binds to its promoter very tightly and produces a high amount of expression. The lac operator is a short sequence that binds to the LacI repressor, which prevents transcription. The LacI protein responds to lactose in the cell. Lactose analogs have been made which are not consumed by E. coli and "turn on" the gene of interest. Our promoters have different affinities to the T7 RNA polymerase and the LacI repressor and therefore have different measurable properties. | ||
</p> | </p> |
Revision as of 19:41, 29 September 2012
An Introduction to Promoters
Promoters are upstream sequences that regulate transcription. Promoters are usually short sequences and act as binding sites for a variety of different RNA polymerases. Promoters have different binding affinities based on their sequence and can be characterized in a matter of different ways. Our project looks to measure some of these properties using fluorescence measurements. In our case, we are characterizing promoters that bind to RNA polymerase from the T7 phage. The T7 RNA polymerase binds to its promoter very tightly and produces a high amount of expression. The lac operator is a short sequence that binds to the LacI repressor, which prevents transcription. The LacI protein responds to lactose in the cell. Lactose analogs have been made which are not consumed by E. coli and "turn on" the gene of interest. Our promoters have different affinities to the T7 RNA polymerase and the LacI repressor and therefore have different measurable properties.
What is fluorescence, exactly?
Fluorescence is a property of some molecules, particularly aromatic organic dyes, that allows them to absorb photons at a certain wavelength and emit them at a longer, lower energy wavelength. Fluorescence is described using quantum mechanics principles and organic chemistry. Five and six-member rings tend to fluoresce brightly because of electron delocalization and the quantum properties that are associated with it. Fluorescent molecules come in a variety of flavors and uses based on their properties, and shape. Fluorescent molecules are known as fluorophores and can take the form of organic dyes or proteins. So far, many different types of fluorophores have been discovered, developed and studied in great detail. Typically, fluorescent proteins have a fluorophore that consists of a few side chains that react and form a complex similar to that of an organic dye. For example, GFP (the most common fluorescent protein) has an HBI fluorophore. Our Spinach construct binds to a dye that derives from this fluorophore. The fluorescence of a molecule can depend on conformation, in the case of our fluorogens, malachite green and DFHBI, which are conditional fluorophores, the molecule must be in a certain conformation to fluoresce. Otherwise, it will absorb photons, but it will emit them very inefficiently (extremely low quantum yield). Fluorescence is a widely studied phenomena and a lot of research is involved with improving current fluorescence technologies and its applications.
What is Spinach?

What is a FAP?
Why is this project important?
- The ability to monitor protein production with fluorescence is a growing field that promises advances in drug development and improving quality control in drug manufacturing.
- Promoter strength directly affects a cell's ability to perform typical functions like divide or move. Designing a genetic circuit that will not overload the cells is key in synthetic biology.
- Inducible promoters are widely used in synthetic biology but many are under-characterized.