Team:Cambridge/TEST1

From 2012.igem.org

(Difference between revisions)
Line 51: Line 51:
     });
     });
-
$('#OV').mouseover(function() {
+
$('#OV').mouseover(function() {
-
$('#over_OV').fadeIn(100);
+
$('#OV').css("background", "white no-repeat");
 +
$('#OV h8').css("background-color","white");
 +
$('#OV h9').css("color","black");
 +
$('#OV h9').css("background-color","white");
 +
$('#OV h9').css("color","black");
});
});
     $('#OV').mouseleave(function() {
     $('#OV').mouseleave(function() {
-
$('#over_OV').fadeOut(100);
+
$('#OV').css("background", "none");
 +
$('#OV h8').css("background-color","black");
 +
$('#OV h8').css("color","white");
 +
$('#OV h9').css("background-color","black");
 +
$('#OV h9').css("color","white");
     });
     });
-
$('#RS').mouseover(function() {
+
$('#RS').mouseover(function() {
-
$('#over_RS').fadeIn(100);
+
$('#RS').css("background", "url('https://static.igem.org/mediawiki/2012/9/9e/CAMV2_RS.jpg') no-repeat");
 +
$('#RS h8').css("background-color","white");
 +
$('#RS h9').css("background-color","white");
 +
$('#RS h9').css("color","black");
});
});
     $('#RS').mouseleave(function() {
     $('#RS').mouseleave(function() {
-
$('#over_RS').fadeOut(100);
+
$('#RS').css("background-image", "none");
 +
$('#RS h8').css("background-color","black");
 +
$('#RS h9').css("background-color","black");
 +
$('#RS h9').css("color","white");
     });
     });
-
+
 
$('#RM').mouseover(function() {
$('#RM').mouseover(function() {
-
$('#over_RM').fadeIn(100);
+
$('#RM').css("background", "url('https://static.igem.org/mediawiki/2012/2/23/CAMV2_RM.JPG') no-repeat");
 +
$('#RM h8').css("background-color","white");
 +
$('#RM h9').css("background-color","white");
 +
$('#RM h9').css("color","black");
});
});
     $('#RM').mouseleave(function() {
     $('#RM').mouseleave(function() {
-
$('#over_RM').fadeOut(100);
+
$('#RM').css("background-image", "none");
 +
$('#RM h8').css("background-color","black");
 +
$('#RM h9').css("background-color","black");
 +
$('#RM h9').css("color","white");
     });
     });
$('#BL').mouseover(function() {
$('#BL').mouseover(function() {
-
$('#over_BL').fadeIn(100);
+
$('#BL').css("background", "url('https://static.igem.org/mediawiki/2012/e/e1/CAMV2_BL.jpg') no-repeat");
 +
$('#BL h8').css("background-color","white");
 +
$('#BL h9').css("background-color","white");
 +
$('#BL h9').css("color","black");
});
});
     $('#BL').mouseleave(function() {
     $('#BL').mouseleave(function() {
-
$('#over_BL').fadeOut(100);
+
$('#BL').css("background-image", "none");
 +
$('#BL h8').css("background-color","black");
 +
$('#BL h9').css("background-color","black");
 +
$('#BL h9').css("color","white");
     });
     });
$('#SD').mouseover(function() {
$('#SD').mouseover(function() {
-
$('#over_SD').fadeIn(100);
+
$('#SD').css("background", "url('https://static.igem.org/mediawiki/2012/8/88/CAMV2_SD.jpg') no-repeat");
 +
$('#SD h8').css("background-color","white");
 +
$('#SD h9').css("background-color","white");
 +
$('#SD h9').css("color","black");
});
});
     $('#SD').mouseleave(function() {
     $('#SD').mouseleave(function() {
-
$('#over_SD').fadeOut(100);
+
$('#SD').css("background-image", "none");
 +
$('#SD h8').css("background-color","black");
 +
$('#SD h9').css("background-color","black");
 +
$('#SD h9').css("color","white");
     });
     });
-
 
Line 127: Line 158:
<div id='main'>
<div id='main'>
-
<div id='HP' class='splash'><h8 style='color:#4682B4;'>Human Practices</h8><p><h9>THE DRIVING FORCE</h9>
+
<div id='HP' class='splash'>
-
<p><h9>some place holder text some place holder text some place holder text some place holder text some place holder text some place holder text</h9>
+
<h8 style='color:#339900;'>Human Practices</h8>
 +
<p><h9>THE DRIVING FORCE</h9>
 +
<p><h9>Our goal is to standardise the output of biosensors, and to develop a cheap, user-friendly kit to be used in the field</h9>
</div>
</div>
<div id='OV' class='splash'>
<div id='OV' class='splash'>
-
<div id='over_OV' class='splash_over'></div>
+
<h8 style='color:#FFFFFF;'>Parts for a Reliable and Field Ready Biosensing Platform</h8>
 +
<p><h9>OVERVIEW</h9>
 +
<p><h9>There are many biosensors available but there is no standard way to deploy them. Many are also non-quantitative and unpredictable. We have been working on a ratiometric luciferase output which can be read by an Arduino device.
 +
This output could be used with theoretically any biosensor. We investigated the potential of riboswitches as future biosensors. We use a B.subtilis chassis as these form low maintenance spores for easy, long-term storage. </h9>
</div>
</div>
 +
<div id='RS' class='splash'>
<div id='RS' class='splash'>
-
<div id='over_RS' class='splash_over'></div>
+
<h8 style='color:#4682B4;'>RiboSense</h8>
 +
<p><h9>A NOVEL FLUORIDE SENSOR BASED ON A RIBOSWITCH CONSTRUCT</h9>
 +
<p><h9>Riboswitches may well be the biosensor of the future though they are currently under-represented in the registry.</h9>
</div>
</div>
 +
<div id='RM' class='splash'>
<div id='RM' class='splash'>
-
<div id='over_RM' class='splash_over'></div>
+
<h8 style='color:#FF9900;'>Ratiometrica</h8>
 +
<p><h9>INVESTIGATING THE POTENTIAL OF RATIOMETRIC REPORTER CONSTRUCTS FOR ACCURATE AND REPRODUCIBLE CHARACTERISATION</h9>
 +
<p><h9>We designed fluorescence and luminescence-based constructs that would function in both E.coli and B.subtilis</h9>
</div>
</div>
 +
<div id='BL' class='splash'>
<div id='BL' class='splash'>
-
<div id='over_BL' class='splash_over'></div>
+
<h8 style='color:#FFFF00;'>Biologger</h8>
 +
<p><h9>A CHEAP, ARDUINO-BASED, AUTOMATIC ROTARY RATIOLUMINOMETER</h9>
 +
<p><h9>An open-sourced, open-platform approach relaying easily interpretable information to a user that is an accurate representation of the input processed by a biological device.</h9>
</div>
</div>
 +
<div id='SD' class='splash'>
<div id='SD' class='splash'>
-
<div id='over_SD' class='splash_over'></div>
+
<h8 style='color:#FFFF33;'>Sporage & Distribution</h8>
 +
<p><h9>B. SUBTILIS: LONG TERM, USER-FRIENDLY STORAGE</h9>
 +
<p><h9>We developed and optimised procedures for sporulation and germination.</h9>
</div>
</div>
 +
</div>
</div>
<div id='bottom'>
<div id='bottom'>

Revision as of 16:58, 24 October 2012

Human Practices

THE DRIVING FORCE

Our goal is to standardise the output of biosensors, and to develop a cheap, user-friendly kit to be used in the field

Parts for a Reliable and Field Ready Biosensing Platform

OVERVIEW

There are many biosensors available but there is no standard way to deploy them. Many are also non-quantitative and unpredictable. We have been working on a ratiometric luciferase output which can be read by an Arduino device. This output could be used with theoretically any biosensor. We investigated the potential of riboswitches as future biosensors. We use a B.subtilis chassis as these form low maintenance spores for easy, long-term storage.

RiboSense

A NOVEL FLUORIDE SENSOR BASED ON A RIBOSWITCH CONSTRUCT

Riboswitches may well be the biosensor of the future though they are currently under-represented in the registry.

Ratiometrica

INVESTIGATING THE POTENTIAL OF RATIOMETRIC REPORTER CONSTRUCTS FOR ACCURATE AND REPRODUCIBLE CHARACTERISATION

We designed fluorescence and luminescence-based constructs that would function in both E.coli and B.subtilis

Biologger

A CHEAP, ARDUINO-BASED, AUTOMATIC ROTARY RATIOLUMINOMETER

An open-sourced, open-platform approach relaying easily interpretable information to a user that is an accurate representation of the input processed by a biological device.

Sporage & Distribution

B. SUBTILIS: LONG TERM, USER-FRIENDLY STORAGE

We developed and optimised procedures for sporulation and germination.