Team:Valencia Biocampus/talking

From 2012.igem.org

Revision as of 09:21, 31 August 2012 by TCarrillo (Talk | contribs)



Talking Interfaces


THE PROCESS


The main objective of our project is to accomplish a verbal communication with our microorganisms. To do that, we need to establish the following process:




  1. The basic life cycle of our biological agent is based on an input/output process through the use of interfaces.
  2. The input used is a voice signal (question), which will be collected by our voice recognizer.
  3. The voice recognizer identifies the question and, through the program in charge of establishing the communication, its corresponding identifier is written in the assigned port of the arduino.
  4. The software of the arduino reads the written identifier and, according to it, the corresponding port is selected, indicating the flourimeter which wavelength has to be emitted on the culture. There are four possible questions (q), and each of them is associated to a different wavelength.
  5. The fluorimeter emits light (Bioinput), exciting the compound through optic filters.
  6. Due to the excitation produced, the compound emits fluorescence (BioOutput), which is measured by the fluorimeter with a sensor.
  7. This fluorescence corresponds to one of the four possible answers (r: response).
  8. The program of the arduino identifies the answer and writes its identifier in the corresponding port.
  9. The communication program reads the identifier of the answer from the port.
  10. "Espeak" emits the answer via a voice signal (Output).


In this section we analyse in detail the main element used in the process:

  • Voice recognizer
  • Arduino
  • Fluorimeter


VOICE RECOGNIZER

Julius is a continuous speech real-time recongizer engine. It is based on Markov's interpretation of hidden models. It's opensource and distributed with a BSD licence. Its main platfomorm is Linux and other Unix systems, but it also works in Windows. It has been developed as a part of a free software kit for research in large-vocabulary continuous speech recognition (LVCSR) from 1977, and the Kyoto University of Japan has continued the work from 1999 to 2003.

In order to use Julius, it is necessary to create a language model and an acoustic model. Julius adopts the acoustic models and the pronunctiation dictionaries from the HTK software, which is not opensource, but can be used and downloaded for its use and posterior generation of acoustic models.

ACOUSTIC MODEL


An acoustic model is a file which contains an statistical representation of each of the different sounds that form a word (phoneme). Julius allows voice recognition through continuous dictation or by using a previously introduced grammar. However, the use of continuous dictation carries a problem. It requires an acoustic model trained with lots of voice files. As the amount of sound files containing voices and different texts increases, the ratio of good hits of the acoustic model will improve. This implies several variations: the pronunciation of the person training the model, the dialect used, etc. Nowadays, Julius doesn't count with any model good enough for continuous dictation in English.

Due to the different problems presented by this kind of recognition, we chose the second option. We designed a grammar using the Voxforce acoustic model based in Markov's Hidden Models. To do this, we need the following file:

-fichero.dict:a list of all the words that we want our culture to recognize and its corresponding decomposition into phonemes.


  • Análisis acústico:
    Los modelos acústicos toman las propiedades acústicas de la señal de entrada, obtienen un conjunto de vectores de características que después compararán con un conjunto de patrones que representan los símbolos de un alfabeto fonético y devuelve los símbolos que más se parecen. En esto se basa el proceso matemático probabilístico llamado Modelo Oculto de Markov. El análisis acústico se basa en la extracción de un vector de características de la señal acústica de entrada con el fin de aplicar la teoría de reconocimiento de patrones. Éste vector es una representación paramétrica de la señal acústica, conteniendo la información más importante y almacenándola de la forma más compacta posible. Con el fin de extraer un buen conjunto de vectores, la señal es preprocesada reduciendo el ruido y la correlación.

  • Modelos Ocultos de Markov (HMM, Hidden Markov Model):
    <rellenar>


MODELO DE LENGUAJE


El modelo de lenguaje hace referencia a la gramática sobre la que el reconocedor va a trabajar y especificará las frases que podrá identificar. En Julius, la gramática de reconocimiento se compone por dos archivos separados:

- fichero . voca: listado de las palabras que contendrá la gramática.
- fichero .grammar: Se especifica la gramática del lenguaje a reconocer.

Ambos archivos deben ser convertidos a .dfa y a .dict utilizando el compilador de gramáticas "mkdfa.pl" El archivo generado .dfa representa un autómata finito y el archivo .dict contiene el diccionario de palabras en el formato de Julius.




Una vez hemos definido el modelo acústico y el modelo de lenguaje, únicamente falta la implementación del programa principal en Phyton. En él ejecutamos Julius y a través del reconocimiento de voz identificamos la pregunta realizada al cultivo.


Arduino

Fluorimeter