Team:NRP-UEA-Norwich/Future
From 2012.igem.org
Nitric oxide (NO) is produced in different environments, be that within humans or by bacteria in soil. It is a nitrogenous species that is involved in the nitrogen cycle. With further research, development and integration into various systems, the future of medicine and agriculture could involve NO sensors.
NO can be produced by nitrifying bacteria during oxidation of ammonium (1). These gases can be released into the atmosphere. NO is also converted back to atmospheric nitrogen in the process of denitrification. The differences in the bacterial species that compose soil flora produce and reduce nitric oxide lead to different levels of NO in soil. Besides soil flora, soil composition, temperature, water levels, tilling and fertiliser quantities (2) can all affect the levels of NO. The levels of NO can affect agricultural yield. This is particularly significant now as the world population is ever increasing; the higher the agricultural yield the more people than can be supported. An accurate NO sensor can allow a farmer to be able to better utilise their resources and to accurately apply fertiliser, water and needed farming techniques to maximise the crop yield.
Nitric oxide is an important physiological signalling molecule within the human body. This highly reactive molecule is produced through the action of enzymes called nitic oxide synthases (NOS). There are three main types of NOS in the body, which each produce NO for a different physiological role: inducible (iNOS), endothelial (eNOS) and neuronal (nNOS) (3). NO in the blood, causes vasodilation through increase of cGMP, a second messenger which activates many receptors and processes (4). As NO signalling is so widespread within the body there are many applications NO sensors can have in medicine.
Whilst NO triggers several defence mechanisms within the innate immune response, it has been found that some bacteria, such as the food-borne pathogen Listeria monocytogenes, are able to use increased NO levels (produced by nitric oxide synthase-2) to promote their colonisation of host cells; culminating in a condition known as listeriosis. L. monoctogenes is absorbed from donor to recipient cell within vacuoles, and as NO decreases the rate at which the immune response destroys these vacuoles the bacteria is increasingly successful. A system which is able to both detect and decrease levels of nitric oxide would thus be highly advantageous in therapeutic strategies to treat L. monocytogenes infection.
This photo is property of James Cavallini, Science Photo Library.