Team:Frankfurt/Notebook
From 2012.igem.org
Home | Team | Project | Organisms | New Yeast RFC | Notebook | Registered Parts | Modeling | Safety | Attributions | Official Team Profile |
---|
Contents |
Labwork
May and June 2012
- Arrangements for labwork
- preparation of competent cells (E.coli, S.cerevisiae), agarose plates (LB, YEPD, SCD-ura,…), medium for E.coli and S.cerevisiae
- Purchasing of the equipment (reaction tubes, glass bottles, pipette tips,..)
- Primer design
July 2012
- Plasmid isolation of p426, p423, pUD8e, pUD22e from E.coli
- Isolation of chromosomal DNA of CEN.PK2-1C
- Trials to get the genes, promoters and terminators via PCR
August 2012
- PCR of the genes, promoters and terminators
- all genes (without KO and KAH), promoters and terminators could be amplified
- Linearization of p426 and p423 with SpeI and XhoI
Templates | Amplified DNA Fragments |
---|---|
synthesized sequence of HMG-CoA | HMG-CoA |
synthesized sequence of GGPPS | GGPPS |
synthesized sequence of Cps/Ks | CPS/KS |
chromosomal DNA of CEN.PK2-1C | ERG20 |
- Biobrick production of the genes HMG-CoA, ERG20, CPS/KS
- restriction of 3 µg of the genes with EcoRI and PstI
- ligation of biobrick genes with linear pSB1C3
- transformation of the ligation in E.coli
- plasmid isolation of E.coli clones
- control restriction of biobrick plasmids with EcoRI and SpeI
- restriction of 3 µg of the genes with EcoRI and PstI
- Formation of the mevalonate overexpression plasmid via gap repair
- first and second yeast transformation with equimolar quantities of DNA fragments for mevalonate overexpression (p426 with 7 inserts): only very small colonies could grow after the first and second transformation
- using pure GGPPS (purification of a preparative gel) for the third yeast transformation: normal size of the colonies
- inoculation of several clones of the third yeast transformation
- plasmid preparation of the clones
- transformation of the plasmids in E.coli
- Amplifying pSB1C3 for biobrick production
- trials to amplify pSB1C3, whose blunt ends were ligated and transformed in E.coli
- pSB1C3 should be linearized by EcoRI and PstI : did not work (two fragments instead of one)
- preparative gel of the linear fragment: very low concentration of linear pSB1C3 (was not sufficient for ligation)
- GC analysis
- GC analysis of the wild type CEN.PK2-1C (standard GGOH): as expected no GGOH could be observed
- Assembly of the KO and the KAH fragments
- amplification of the fragments via PCR (there are four fragments of each gene with an overhang to the fragment beside of 30 bp)
- Gibson assembly of the fragments of KO and KAH: did not work
Substance | Volume [µl] |
PEG 3350 (50% (w/v)) | 260 |
LiAcetat 1.0 M | 36 |
Single-stranded carrier DNA (10 mg/ml) | 10 |
Total volume | 306 |
10. Prepare DNA aliquots: Solute enough DNA (e.g. 100 ng plasmid) in 54 µl of water
11. Unfreeze the cells in a 37°C block for 15-30 sec
12. Centrifuge the solution at 13000x g for 2 minutes
13. Remove the supernatant
14. Add 306 µl of FCC transformation mixture to the cells
15. Add 54 µl of the DNA to the solution and vortex shortly
16. When all the reaction tubes are prepared, vortex the samples well until all pellets are completely resoluted
17. Incubate the samples for 40 minutes at 42°C in a heating block
18. Centrifuge the cells at 13000x g for 30 sec and pour off the supernatant
19. Resuspend the cells in sterile water by vortexing
20. Spread onto the appropriate medium
21. Let the cells grow at 30°C
E.coli Transformation
PCR
Culture Medium
Full Medium (YEPD) for Yeast | |||
---|---|---|---|
Yeast Extract | 1 % (weight/volume) | ||
Pepton | 2 % (w/v) | ||
Glucose | 2 % (w/v) |
Synthetic Complete Medium (SC) for Yeast | |||
---|---|---|---|
Yeast Nitrogen Base | 0.17 % (w/v) | ||
Ammoniumsulfate | 0.5 % (w/v) | ||
Glucose | 2 % (w/v) | ||
Amino Acid Mix° | 50 ml/l | ||
Histidin** | 0.25 mM | ||
Tryptophan** | 0.19 mM | ||
Leucin** | 0.35 mM | ||
Uracil** | 0.44 mM |
pH has to be regulated with KOH to pH=6.3
° contains no His, Leu, Trp and Uracil
** addition of this components depents on the respective selection medium
SOC-Medium for Regeneration of transformed Escherichia coli`s after Electroporation | |||
---|---|---|---|
Trypton | 2 % (w/v) | ||
Yeast Extract | 0.5 % (w/v) | ||
NaCl | 10 mM | ||
KCl | 2,5 mM | ||
MgCl2 | 10 mM | ||
MgSO4 | 10 mM | ||
Glucose | 20 mM |
pH has to be regulated to pH=6.8-7.0
Full Medium (LB) for E.coli | |||
---|---|---|---|
Yeast Extract | 0.5 % (w/v) | ||
Trypton | 1 % (w/v) | ||
NaCl | 0.5 % (w/v) |
pH has to be regulated with NaOH to pH=7.5
Every cluture medium has to be autoclaved to be sterile.
Agar Plate
LBampicillin-Agar
Add 2 % agar to LB-medium. After autoclaving and cooling-down to 60 °C steril ampicillin is added. Plates were poured.
SCD-Agar
Add 2 % agar to SCD-medium. After autoclaving and cooling-down steril amino acid solution is added. Dependent on the respective selective medium Histidin (0.25 mM), Trypthophan (0.19 mM), Uracil (0.44 mM) or Leucin (0.35 mM) are added. Plates were poured.
YEPDG418-Agar
Add 2 % agar to YEPD-medium. After autoclaving and cooling-down sterile G418 (final concentration 2g/l) is added. Plates were poured.
Gel Electrophoresis
Agarose Gel (1x) | |||
---|---|---|---|
TAE puffer | 1x | ||
Agarose | 1 % (w/v) |
Solve agarose in TAE by boiling it. After cooling-down to 55-60 °C gel is poured.
TAE Puffer (50x) for Gel Electrophoresis | |||
---|---|---|---|
EDTA | 18,6 g | ||
Tris | 242g | ||
Glacial Acetic Acid | 57,2 ml | ||
Purified Water | 1000ml |
pH has to be regulated with glacial acetic acid to pH=8.
Kit
PCR Purification Kit from Qiagen
Gel Extraction Kit from Qiagen
Midi Plasmid Preparation Kit from Qiagen