Team:Paris Bettencourt/Human Practice/Report

From 2012.igem.org

Revision as of 16:27, 19 September 2012 by Claire09 (Talk | contribs)


iGEM Paris Bettencourt 2012

Human Practice Report

Contents

Summary

Introduction

In our human practice report, we discussed putting genetically modified bacteria in the wild.

When discussing such a question, it is crucial to differentiate the concerns that are just about synthetic biology and the ones that really involve applications in the field. The debate on the technique should happen, and then be closed once and for all so we can move forward to discussing the applications.

Therefore, we decided to separate our human practice report in two distinct parts. The first one will address the concerns raised by synthetic biology per se, that is, as a technique. Then, in our second part, we will analyze the specific concerns that arise from synthetic biology’s potential applications in nature.

I Debate on the technique

Firstly, we studied the historical background of synthetic biology. We presented synthetic biology as an extension to genetic engineering, and examined the shared controversies around recombinant DNA technology. We showed that scientists handled the situation in an exemplary way, and we provided a detailed analysis of the 1975 Asilomar conference.

Secondly, we studied the concerns raised by synthetic biology nowadays. We used numbers from the 2010 Eurobarometer on biotechnologies and Hart Research Associates’ 2010 poll on “Awareness & Impressions of Synthetic Biology” to study awareness, perception, and approval of synthetic biology in the European and American populations. We showed that the level of awareness of synthetic biology in Europe is incredibly low (only 17% of participants had already heard of synthetic biology previous to the poll), that the approval rate is low to average in both Europe and the US, that these populations want tight government regulation, and that the main concerns raised by synthetic biology are: unnaturalness, playing god, status of artificial life, potential physical harms, regulations. We then provided a detail analysis of these concerns. We came to the conclusion that: (a) The “unnaturalness” and “playing God” arguments convey the population’s fear of novelty and of the unknown, and should not just be tossed aside; (b) Religion is in favor of synthetic biology and does not consider that synthetic biologists are “creating life”; (c) Questions such as “is there such a thing as artificial life?”, “what will be the status of this artificial life?” will have to be addressed someday, and probably sooner than later; (d) Biosafety measures to prevent bacteria from harming workers or escaping the lab and proliferating in the wild are efficient; (e) Church’s proposal seems to be a good starting point for biosecurity; (f) Synthetic biology should not be regulated by the free market.

Thirdly, we examined the common question “will rising awareness change anything?”, and its implications. We came to the conclusion that (a) Skepticism is not necessarily due to lack of awareness; (b) We disagree with the finality of educating on new technologies so that the population can accept them better. (c) Education on new technology should be provided so people can be more aware of what is happening around them. Educating middle and high school students could be one way, amongst others, to achieve this goal

Contribution 1: We organized a workshop on synthetic biology for high school students in order for them to discover this new field. We also gave them a tour of our lab.

Proposal 1: Since the workshop (contribution 1) was a success, we would like that in the future, collaboration with a middle school or high school be a requirement for an iGEM gold medal. This would drastically raise the world level of awareness about synthetic biology.

Proposal 2: Extend proposal 1 to a mandatory high school course called “new technologies”.


II The debate on putting genetically modified bacteria in the environment

Firstly, we examined issues around horizontal gene transfer (HGT), excessive proliferation and risks assessment. We showed the difficulty of assessing risk when it comes to putting genetically modified bacteria in the wild, and that from the very start (beginning of recombinant DNA technology), people have been concerned about HGT and excessive proliferation. We screened the literature and previous iGEM teams’ wikis to identify security systems that had already been constructed. Systems proposed by previous iGEM teams are very often kill switches, toxin/antitoxin systems, aggregation modules, and usually one mutation away from failure. Our literature screen indicated that such systems were used at first, but that scientists then started combining different system (for e.g. two different toxin/antitoxin systems), which made the systems more efficient, but still quite close from mutation. Some more elaborate mechanisms are being created now: they are systems that render synthetic bacteria’s genetic information not universal anymore, preventing communication with wild type bacteria (for e.g. semantic containment, xeno-nucleic acids). We then discussed the master safeguard system we designed to try and decrease the probability of HGT and excessive proliferation.

Contribution 2: We tried to engineer a master safeguard system. We wanted this system to be as robust as possible against mutations. We decided to add up containment systems in order to increased robustness. We relied on three levels of containment: - Physical containment with alginate capsules - An improved killswitch featuring delayed population-level suicide through complete genome degradation. - Semantic containment using an amber suppressor system We acknowledge that our system is not perfect or infallible. However, we believe that it is a good starting point, and that next year, teams can build up from this like we built up from previously existing systems.


Outline

Report

Copyright (c) 2012 igem.org. All rights reserved. Design by FCT.