Team:Paris Bettencourt/Human Practice/Report

From 2012.igem.org

Revision as of 11:41, 19 September 2012 by Claire09 (Talk | contribs)


iGEM Paris Bettencourt 2012

Human Practice Report

Contents

Summary

Introduction

In our human practice report, we discussed putting genetically modified bacteria in the wild.

When discussing such a question, it is crucial to differentiate the concerns that are just about synthetic biology and the ones that really involve applications in the field. The debate on the technique should happen, and then be closed once and for all so we can move forward to discussing the applications.

Therefore, we decided to separate our human practice report in two distinct parts. The first one will address the concerns raised by synthetic biology per se, that is, as a technique. Then, in our second part, we will analyze the specific concerns that arise from synthetic biology’s potential applications in nature.

I Debate on the technique

Firstly, we studied the historical background of synthetic biology. We presented synthetic biology as an extension to genetic engineering, and examined the shared controversies around recombinant DNA technology. We showed that scientists handled the situation in an exemplary way, and we provided a detailed analysis of the 1975 Asilomar conference.

Secondly, we studied the concerns raised by synthetic biology nowadays. We used numbers from the 2010 Eurobarometer on biotechnologies and Hart Research Associates’ 2010 poll on “Awareness & Impressions of Synthetic Biology” to study awareness, perception, and approval of synthetic biology in the European and American populations. We showed that the level of awareness of synthetic biology in Europe is incredibly low (only 17% of participants had already heard of synthetic biology previous to the poll), that the approval rate is low to average in both Europe and the US, that these populations want tight government regulation, and that the main concerns raised by synthetic biology are: unnaturalness, playing god, status of artificial life, potential physical harms, regulations. We then provided a detail analysis of these concerns. We came to the conclusion that: (a) The “unnaturalness” and “playing God” arguments convey the population’s fear of novelty and of the unknown, and should not just be tossed aside; (b) Religion is in favor of synthetic biology and does not consider that synthetic biologists are “creating life”; (c) Questions such as “is there such a thing as artificial life?”, “what will be the status of this artificial life?” will have to be addressed someday, and probably sooner than later; (d) Biosafety measures to prevent bacteria from harming workers or escaping the lab and proliferating in the wild are efficient; (e) Church’s proposal seems to be a good starting point for biosecurity; (f) Synthetic biology should not be regulated by the free market.

Thirdly, we examined the common question “will rising awareness change anything?”, and its implications. We came to the conclusion that (a) Skepticism is not necessarily due to lack of awareness; (b) We disagree with the finality of educating on new technologies so that the population can accept them better. (c) Education on new technology should be provided so people can be more aware of what is happening around them. Educating middle and high school students could be one way, amongst others, to achieve this goal

Proposal 1: To organize a workshop on synthetic biology for high school students in order for them to discover this new field. If this is a success, we would like that in the future, collaboration with a middle school or high school be a requirement for an iGEM gold medal. This would drastically raise the world level of awareness about synthetic biology.

Proposal 2: Extend proposal 1 to a mandatory course called “new technologies”.

II The debate on putting GM bacteria in the environment

Outline

Report

Copyright (c) 2012 igem.org. All rights reserved. Design by FCT.