Team:Colombia/Human/SynthEthics
From 2012.igem.org
Template:Https://2012.igem.org/User:Tabima
Contents |
SynthEthics - A Phylosophical Debate
Introduction
Emerging technologies must not forget to have a clear bioethical stand, and synthetic biology should be no different. Advances in this field may open the door to engineering living systems in a similar way we design new dishwashers, computers or spaceships, and may certainly improve our life quality. However, we are talking about the same engineering has created sophisticated weapons, tanks, and the atomic bomb: synthetic biology could be used for good or bad. Even though we may expect huge benefits from it, there are risks. One major concrete concern refers to the possibility of purposely designing pathogenic strains as a tool for bioterrorism. What was fiction a decade ago, namely the creation of a target population specific pathogen, may aid from advances in tumor specific therapies and recent improvements in DNA synthesis and become a real weapon for xenophobism. To address all these issues, different bodies, agents and organizations have started lively discussions and actions against the potential risks of synthetic biology (discussed on the [http://syntheticbiology.org/SB2.0/Biosecurity_and_Biosafety.html internet site] of the US synthetic biology. Both in the US and in the EU several forums for discussion and documents regarding Biosafety have appeared ([http://www.jcvi.org/research/synthetic-genomics-report/ JCVI Synthetic Genomics - Options for Governance]; [http://www.rathenau.nl/en.html Rathenau Institut]; [http://openwetware.org/wiki/Synthetic_Society/Community_Organization_and_Culture OpenWetWare]). In the case of the EU, some research projects have been funded to analyze the impact and safety problems of Synthetic Biology in Europe ([http://www.synbiosafe.eu SYNBIOSAFE]; [http://www2.spi.pt/synbiology/ SYNBIOLOGY]) (Serrano, 2007). In this way, the success of synthetic biology will depend on its capacity to surpass traditional engineering, blending the best features of natural systems with artificial designs that are extensible, comprehensible, user-friendly, ethical, and most importantly implement stated specifications to fulfill user goals (Andrianantoandro et al., 2006).
Participation in the Sabana University's First Philosophy and Biosciences Workshop
As another attempt to spread the principles of synthetic biology into diverse social populations, we accepted an invitation from the [http://www.unisabana.edu.co/ Sabana University] located in Chía, Colombia to the [http://www.unisabana.edu.co/nc/la-sabana/campus-20/noticia/articulo/primer-workshop-filosofia-y-biociencias-facultad-de-filosofia-y-ciencias-humanas/ first philosophy and biosciences workshop] (11, 12, and 13th of June). The main focus of this event was to address the concepts of “complexity and emergency” from both stand points, as well as to generate very much forgotten dialogues between philosophers and scientists. The main guests ranged from local representatives of the scientific community, to expert philosophers from Spain and Poland. Some of these special guests were [http://investigacion.us.es/sisius/sis_showpub.php?idpers=1210 Prof. Juan Arana], an expert in Philosophy and Contemporary Culture from the Universidad De Sevilla in Spain, [http://201.234.78.173:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000268186 Dr. Fernando Lizcano], an Endocrinnology specialist from Universidad de la Sabana, Colombia, [http://www.unav.es/adi/servlet/Cv2.ara?personid=33807&pagina=8962&action=ver_pagina&cambia_idioma=2 Prof. José Murillo], an subdirector of the Anthropology and Ethics Institute of the Universidad de Navarra, Spain, among others.
On the other hand, Prof. José Murillo focused in a more existential aspect of synthetic biology. Our use of controversial expressions earlier teased Prof. Murillo as expected, and he strongly defended how life may not be produced or built, but instead transformed. The reason behind this is the fact that synthetic biology relies on “ingredients” generated by biological processes. He believes that to “build” life is not the only way to understand it, and that the concept of producing life is ambiguous and obscures the reality of life itself. He proposed that one main difference between human generated machines and “biological machines” is that the whole purpose of the former is to accomplish a specific objective. This is their whole meaning of existence. Quoting [http://en.wikipedia.org/wiki/Aristotle Aristotle], life is generated by motion, and a living being is produced only when it sets itself in motion. In this way, machines are not their own movement; they limit themselves to defined functions. Living beings, however, must first function for themselves before being able to do things. Finally, he questioned the practicality of living beings as engineering scaffolds and we were once again accused of hubris, doing this for the purpose of controlling life instead of pursuing specific advantages of this technology.
Regarding Prof. Arana’s input, we believe he is right to a certain extent. Although it is true biological systems are chaotic in nature, and that it is true it is very difficult to assure complete understanding of our design’s, this is the exact reason why iGEM HQ has a biosafety requirement. Additionally, this highlights the importance of making mathematical models in order to predict design behaviors and possible glitches. ...................
From this activity, we realized how new technologies change how people think about themselves. This encouraged us to make the decision of extending our outreach not only to students but coffee growers, since they would be the people directly affected by our technology. We realized we had to be very careful as to how to express ourselves, and how our actions could heavily influence the lifestyle of others. With this in mind, we decided to investigate how the emergence of genetics and genetically oriented technologies has impacted society. We thought that by doing this, we would be able to improve our perspective into how to approach different social groups, as well as to understand our responsibility as scientists.
References
- Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular systems biology, 2, 2006.0028. doi:10.1038/msb4100073
- Elowitz, M., & Lim, W. A. (2010). Build life to understand it. Nature, 468(7326), 889–90. doi:10.1038/468889a
- Serrano, L. (2007). Synthetic biology: promises and challenges. Molecular systems biology, 3(158), 158. doi:10.1038/msb4100202