Team:Paris Bettencourt/Achievements
From 2012.igem.org
Achievements of all the different modules
Semantic containment
Creating a semantic containment system to prevent gene expression in natural organisms Characterize the system Use this system in all genes of the system, the critical genes first (e.g. colicin) System An amber codon (stop codon) embedded in protein genes to prevent their expression and an amber suppressor system in our genetically engineered bacteria Achievements : Construction and characterization of 2 biobricks : K914000 : PLac-supD-T : tRNA amber suppressor K914009 : P1003* Ser133->Amber Codon : kanamycin gene resistance with 1 amber mutation Both part were well characterized and works well. For the second parts, we show that as expected, one mutation is quite leaky, although it works qualitatively, but one mutation is not enough if we want to release such parts in nature. Other reasons emphasize this observation, notably the weakness of being at one mutation to recover the protein functionality. Creation of a new category in the part registry : Semantic containment. The aim of this category is to let people improving each part by adding for instance other amber mutations to existing part to increase the containment. |
Suicide system
System : A synthetic toxin-anti-toxin system based on the wild type Colicin E2 operon. Achievements : We showed that Colicin E2 cells induce cell death in sensitive populations, and that these sensitive populations can be protected by providing them with our engineered immunity protein.
Part K914001 is well characterized and provides immunity to sensitive cells against the Colicin E2 activity protein, but is leaky. Part K914002 is promoterless and allows users to easily plug in the appropriate promoter for their desired purpose.
|
Restriction Enzyme System
Aim: To design a plasmid self-digestion system. Experimental System: We are testing different combinations of promoters and restriction enzymes. We have to characterize both the promoters (by measuring the expression of RFP) and the restriction enzymes (by measuring killed cells). Achievements :
|
MAGE Aims : Removal of four FseI restriction sites from E. coli MG1655 genome. Experimental System: Using multiplex automated genome engineering (MAGE) - a technique capable of editing the genome by making small changes in existing genomic sequences. Achievements: Proof of concept by introducing a stop codon in the middle of the lacZ gene |
Synthetic Import Domain Aim : Creation of a novel protein import mechanism in bacteria.
Exploit the natural Colicin import domain fused to any protein at will, dubbed here: "Synthetic Import Domain". Achievements:
|
Encapsulation Aim: Harness bacteria-containing gel beads to assure cell containment and complement activity of genetic safety systems. Experimental system: Bacterial cells are encapsulated in alginate beads. We used a cell containment assay based on plating to assess the release of cells from alginate beads. In addition, we aimed at improving the entrapment of cells through stabilization by polyethyleneimine and covalent cross-linkage by glutaraldehyde. Achievements:
|
Human Practice
Aim To chart new venues of best practice for synthetic biology. To this end, we examined the ethical, biological and social concerns related to the release of genetically modified bacteria in the wild. Metodology
You can find the full list of conclusions here Main Proposals
You can find the full list of proposals here |