Team:LMU-Munich/Germination Stop

From 2012.igem.org

(Difference between revisions)
Line 44: Line 44:
We were concerned that because the beginning stage of germination is a strictly biochemical one, that maybe our spores would lose the ability to fully germinate, but would nonetheless become deformed by the initial steps of germination. This would be problematic because the spores should be vectors to carry proteins; deformed spores could be ineffective as delivery vectors. The investigative work of [http://www.ncbi.nlm.nih.gov/pubmed/17535925 Plomp et al (2007)] on ''Bacillus'' cells seems to support that the lytic enzyme knockouts we chose could help to maintain the spore shape. They state:  
We were concerned that because the beginning stage of germination is a strictly biochemical one, that maybe our spores would lose the ability to fully germinate, but would nonetheless become deformed by the initial steps of germination. This would be problematic because the spores should be vectors to carry proteins; deformed spores could be ineffective as delivery vectors. The investigative work of [http://www.ncbi.nlm.nih.gov/pubmed/17535925 Plomp et al (2007)] on ''Bacillus'' cells seems to support that the lytic enzyme knockouts we chose could help to maintain the spore shape. They state:  
-
“A significant fraction (≈30%) of spores did not proceed to outgrowth in the timeframe of the observation and did not exhibit degradation of the rodlet layer. However, after drying, >90% of these spores showed a structural collapse, indicating prior replacement of the dipicolinic acid in the spore core with water, i.e. they did proceed through the germination stage, but not the outgrowth stage.” […] “Etch pits were the initiation sites for early germination-induced spore coat fissure formation.” […] “Disassembly of the higher-order rodlet structure initiates at micro-etch pits, and proceeds by the expansion of the pits to form fissures perpendicular to the rodlet direction.” […] “We suggest by analogy that rodlet structure degradation is caused by specific hydrolytic enzyme(s), located within the spore integument and activated during the early stages of germination.”
+
::“A significant fraction (≈30%) of spores did not proceed to outgrowth in the timeframe of the observation and did not exhibit degradation of the rodlet layer. However, after drying, >90% of these spores showed a structural collapse, indicating prior replacement of the dipicolinic acid in the spore core with water, i.e. they did proceed through the germination stage, but not the outgrowth stage.” […] “Etch pits were the initiation sites for early germination-induced spore coat fissure formation.” […] “Disassembly of the higher-order rodlet structure initiates at micro-etch pits, and proceeds by the expansion of the pits to form fissures perpendicular to the rodlet direction.” […] “We suggest by analogy that rodlet structure degradation is caused by specific hydrolytic enzyme(s), located within the spore integument and activated during the early stages of germination.”
What we read from this is that spores can be cued to germinate, and the etch pits that lead to the destruction of the spore coat can be formed, but without the activity of lytic enzymes, further steps of germination do not occur.
What we read from this is that spores can be cued to germinate, and the etch pits that lead to the destruction of the spore coat can be formed, but without the activity of lytic enzymes, further steps of germination do not occur.

Revision as of 08:23, 7 September 2012

iGEM Ludwig-Maximilians-Universität München Beadzillus

Team-LMU streaked plate.resized.jpg

The LMU-Munich team is exuberantly happy about the great success at the World Championship Jamboree in Boston. Our project Beadzillus finished 4th and won the prize for the "Best Wiki" (with Slovenia) and "Best New Application Project".

IGEM HQ LMU prize.jpg

[ more news ]

Sporenfreunde