Team:Dundee

From 2012.igem.org

(Difference between revisions)
Line 42: Line 42:
Clostridium difficile (C. diff) - associated disease of the gut is a major health problem, and current treatment methods are both ineffective and unpalatable.  Previous research identified a C. diff-specific endolysin from the phage ΦCD27, which could be used to kill C. diff cells. Type VI secretions systems, found in a variety of organisms including Salmonella typhimurium, are characterised by a needle structure, the primary component of which is encoded by the gene Hcp. The tip of the needle is encoded by VgrG. The aim of this project was to create a new type of synthetic Escherichia coli expressing a simplified version of the Type VI Secretion System, with the C. diff-specific endolysin fused to VgrG, and which could be delivered to the gut to combat serious C. diff infections. Mathematical modelling was used to assist in the biological planning and a variety of relevant software applications were made.
Clostridium difficile (C. diff) - associated disease of the gut is a major health problem, and current treatment methods are both ineffective and unpalatable.  Previous research identified a C. diff-specific endolysin from the phage ΦCD27, which could be used to kill C. diff cells. Type VI secretions systems, found in a variety of organisms including Salmonella typhimurium, are characterised by a needle structure, the primary component of which is encoded by the gene Hcp. The tip of the needle is encoded by VgrG. The aim of this project was to create a new type of synthetic Escherichia coli expressing a simplified version of the Type VI Secretion System, with the C. diff-specific endolysin fused to VgrG, and which could be delivered to the gut to combat serious C. diff infections. Mathematical modelling was used to assist in the biological planning and a variety of relevant software applications were made.
-
<h2><img src="https://static.igem.org/mediawiki/2012/a/ad/Homepic1.png"></h2>
+
<h2><img src="https://static.igem.org/mediawiki/2012/0/08/Homepic1.png"></h2>
<h2><img src="https://static.igem.org/mediawiki/2012/a/ad/Homepic2.png"></h2>
<h2><img src="https://static.igem.org/mediawiki/2012/a/ad/Homepic2.png"></h2>

Revision as of 22:24, 6 September 2012

Clostridium difficile (C. diff) - associated disease of the gut is a major health problem, and current treatment methods are both ineffective and unpalatable.  Previous research identified a C. diff-specific endolysin from the phage ΦCD27, which could be used to kill C. diff cells. Type VI secretions systems, found in a variety of organisms including Salmonella typhimurium, are characterised by a needle structure, the primary component of which is encoded by the gene Hcp. The tip of the needle is encoded by VgrG. The aim of this project was to create a new type of synthetic Escherichia coli expressing a simplified version of the Type VI Secretion System, with the C. diff-specific endolysin fused to VgrG, and which could be delivered to the gut to combat serious C. diff infections. Mathematical modelling was used to assist in the biological planning and a variety of relevant software applications were made.