Team:Technion/Safety

From 2012.igem.org

(Difference between revisions)
Line 25: Line 25:
===Bacteriophage lambda:===
===Bacteriophage lambda:===
-
Current viral gene transfer vectors are based on animal viruses that have significant drawbacks for clinical use, including potential safety. Bacteriophage lambda represents a new class of vector that has a long history of safe human use with minimal safety concerns because it is a bacterial virus without the capability to productively infect mammalian cells, therefore the probability and hazard of an infection are both minimal.
+
Current viral gene transfer vectors are based on animal viruses that have significant drawbacks for clinical use, including potential safety. Bacteriophage lambda represents a new class of vector that has a long history of safe human use with minimal safety concerns because it is a bacterial virus without the capability to productively infect mammalian cells, therefore the probability and hazard of an infection are both minimal. <br>
 +
Since Bacteriophage lambda infects E.coli strains, working with this kind of organism requires special care and safety measures in order for the phage not to contaminate the E.coli strains in our department. Some of the research labs in our department are using E.coli strains in their research, hence, contamination with phage lambda might compromise their work. Moreover, humans have E.coli in their digestive system, therefore an infection of the phage might cause problems. <br>
 +
In order to deal with these safety issues we are taking the following steps: First, we work in a separate student lab free of bacterial strains that are used for research. Second, the first phase of working with the phage consists of the phage DNA alone, and not the phage as a whole; since the DNA cannot cause harm on its own it lowers the chance of infection during our work. Third,  any work with the phage is carried out in a designated bench area with a set of dedicated instruments. Finally, additional safety measures are taken, such as: protective gloves, disposable coats, disinfection of the bench area with ethanol before and after usage, and a separate container for storage. <br>
 +
In conclusion, the biohazard risk of the phage to the researchers and the public is minimal, though the hazard to other bacterial strains in the faculty is higher. As described, we are taking precautions to lower the probability of the phage infecting bacteria in our faculty. <br>

Revision as of 14:52, 6 September 2012



Contents

Safety First

Biological hazard, also known as a biohazard, is an organism or a by-product from an organism that is harmful or potentially harmful to other living things, primarily human beings. There are four levels of biohazards, classified by the Center for Disease Control and Prevention (CDC) in the United States. A level 1 biological hazard poses the least risk while a level 4 poses the greatest.

List of organisms:

1. Escherichia coli, Top10
2. Escherichia coli, DH5α
3. Bacteriophage lambda

List of Hazardous Materials:

1. Ethidium Bromide
2. Sodium Dodecyl Sulfate (SDS)
3. Chloroform

Safety issues in terms of research, environment and public safety

All of the team members participated in lab and safety training given to us by our lab managers. They showed us how to use all of the instruments and materials in the lab in a way that wouldn't endanger us or the environment.

Bacterial Strains:

Since we are using standard E.coli strains (TOP10, DH5α) which pose no risk to either individuals or to the environment the vector strains used in our project are all level 1 biohazard. Therefore, when considering the "hazard factor" in the Risk = probability x hazard equation, our project wouldn't raise any safety issues to the researchers, the environment or to public safety, even in the case that the bacterial strains are released outside the lab. As for probability, we are taking the measures that are needed for level 1 biohazard, such as gloves, closed containers, and lab hygiene, to minimize the chance of the bacteria getting out of the lab.

Bacteriophage lambda:

Current viral gene transfer vectors are based on animal viruses that have significant drawbacks for clinical use, including potential safety. Bacteriophage lambda represents a new class of vector that has a long history of safe human use with minimal safety concerns because it is a bacterial virus without the capability to productively infect mammalian cells, therefore the probability and hazard of an infection are both minimal.
Since Bacteriophage lambda infects E.coli strains, working with this kind of organism requires special care and safety measures in order for the phage not to contaminate the E.coli strains in our department. Some of the research labs in our department are using E.coli strains in their research, hence, contamination with phage lambda might compromise their work. Moreover, humans have E.coli in their digestive system, therefore an infection of the phage might cause problems.
In order to deal with these safety issues we are taking the following steps: First, we work in a separate student lab free of bacterial strains that are used for research. Second, the first phase of working with the phage consists of the phage DNA alone, and not the phage as a whole; since the DNA cannot cause harm on its own it lowers the chance of infection during our work. Third, any work with the phage is carried out in a designated bench area with a set of dedicated instruments. Finally, additional safety measures are taken, such as: protective gloves, disposable coats, disinfection of the bench area with ethanol before and after usage, and a separate container for storage.
In conclusion, the biohazard risk of the phage to the researchers and the public is minimal, though the hazard to other bacterial strains in the faculty is higher. As described, we are taking precautions to lower the probability of the phage infecting bacteria in our faculty.