Team:NRP-UEA-Norwich/Parts

From 2012.igem.org

(Difference between revisions)
(Description)
Line 1: Line 1:
{{UEANRP}}
{{UEANRP}}
=Parts=
=Parts=
-
==Description==
+
==The Hybrid Promoter==
-
An important aspect of the iGEM competition is the use and creation of standard  biological parts. Each team will make new parts during iGEM and will place them in the [http://partsregistry.org Registry of Standard Biological Parts]. The iGEM software provides an easy way to present the parts your team has created . The "groupparts" tag will generate a table with all of the parts that your team adds to your team sandbox.  Note that if you want to document a part you need to document it on the [http://partsregistry.org Registry], not on your team wiki.
+
-
Remember that the goal of proper part documentation is to describe and define a part such that it can be used without a need to refer to the primary literature. The next iGEM team should be able to read your documentation and be able to use the part successfully. Also, you should provide proper references to acknowledge previous authors and to provide for  users who wish to know more.
+
==The Comparator Circuit==
 +
 
 +
The comparator circuit
 +
 
 +
This system relies on two interacting mRNA transcripts, both of which would ordinary be translated into a reporter (a fluorescent protein in our case) in the presence of a particular substrate. The idea being that these transcripts will only be made in the presence of certain substrates due to differing promoter activity. Two promoters with overlapping specificity would be used and, crucially, if both promoters detect the same substrates but differ in that one extra substrate is detected by one of the promoters, it is this substrate and this substrate only that our system will be able to detect in a simple and quantitative way.
 +
 
 +
Our system relies on two constructs that interact via complimentary base pair sequences both before and after the ribosome binding site of the reporter protein. The idea being that, when both transcripts are present in the chassis, they would bind together, inhibiting the translation of the reporter proteins. Any imbalance of transcription due to the presence of the substrate of interest results in free mRNA of the gene system that detects that substrate.
 +
 
 +
Our team have constructed a countercurrent comparator circuit in which the reporter proteins are at the same end of the complimentary region, although a contracurrent system has been theorised. Both systems share a crucial subtractive nature comparable to an analogue computer. We envisage that, should the system be fine-tuned and expanded on, a variety of different business sectors from agriculture to spinoff pharmaceutical companies (such as the fictious QuantaCare) could capitalise on this novel genetic technology.
 +
 
 +
Assembling the various gene constructs was not without its challenges. The construction of complimentary ‘zips’ within the sequence that surrounded and, in the case of the contracurrent comparator circuit, included the ribosome binding site it was often the case that the DNA sequence would form unwanted secondary structures. When designing the DNA we took care to avoid these structures obstructing sequences required for translation of the mRNA and, at the same time, only using codons that we know are not rare in E. coli and that code for an amino acid that is unlikely to change the function of the protein produced. This is required since the zip sequences extend past the translational start codon, thus our construct will add a small N-terminal tag to the reporter protein.
 +
 
 +
Due to the stop codon present in the scars of Assembly Standard 10 BioBricks, we decided that our constructs would have to be an Assembly Standard 23 BioBrick. Although the use of Bioscaffolds produced by previous iGEM teams was considered, time constraints meant that changing the Assembly Standard we put our BioBricks in would be the most convenient solution.
 +
 
 +
The two gene constructs for the comparator circuit are currently being synthesised, and we look forward to receiving the synthetic gene soon and being able to characterise it!
==Our Parts==
==Our Parts==
<groupparts>iGEM012 NRP-UEA-Norwich</groupparts>
<groupparts>iGEM012 NRP-UEA-Norwich</groupparts>

Revision as of 14:09, 23 August 2012

Header1NewGreen.png

NRP UEA iGEM 2012

 

Contents

Parts

The Hybrid Promoter

The Comparator Circuit

The comparator circuit

This system relies on two interacting mRNA transcripts, both of which would ordinary be translated into a reporter (a fluorescent protein in our case) in the presence of a particular substrate. The idea being that these transcripts will only be made in the presence of certain substrates due to differing promoter activity. Two promoters with overlapping specificity would be used and, crucially, if both promoters detect the same substrates but differ in that one extra substrate is detected by one of the promoters, it is this substrate and this substrate only that our system will be able to detect in a simple and quantitative way.

Our system relies on two constructs that interact via complimentary base pair sequences both before and after the ribosome binding site of the reporter protein. The idea being that, when both transcripts are present in the chassis, they would bind together, inhibiting the translation of the reporter proteins. Any imbalance of transcription due to the presence of the substrate of interest results in free mRNA of the gene system that detects that substrate.

Our team have constructed a countercurrent comparator circuit in which the reporter proteins are at the same end of the complimentary region, although a contracurrent system has been theorised. Both systems share a crucial subtractive nature comparable to an analogue computer. We envisage that, should the system be fine-tuned and expanded on, a variety of different business sectors from agriculture to spinoff pharmaceutical companies (such as the fictious QuantaCare) could capitalise on this novel genetic technology.

Assembling the various gene constructs was not without its challenges. The construction of complimentary ‘zips’ within the sequence that surrounded and, in the case of the contracurrent comparator circuit, included the ribosome binding site it was often the case that the DNA sequence would form unwanted secondary structures. When designing the DNA we took care to avoid these structures obstructing sequences required for translation of the mRNA and, at the same time, only using codons that we know are not rare in E. coli and that code for an amino acid that is unlikely to change the function of the protein produced. This is required since the zip sequences extend past the translational start codon, thus our construct will add a small N-terminal tag to the reporter protein.

Due to the stop codon present in the scars of Assembly Standard 10 BioBricks, we decided that our constructs would have to be an Assembly Standard 23 BioBrick. Although the use of Bioscaffolds produced by previous iGEM teams was considered, time constraints meant that changing the Assembly Standard we put our BioBricks in would be the most convenient solution.

The two gene constructs for the comparator circuit are currently being synthesised, and we look forward to receiving the synthetic gene soon and being able to characterise it!

Our Parts

<groupparts>iGEM012 NRP-UEA-Norwich</groupparts>