Team:Cambridge/Protocols/PCRProtocol

From 2012.igem.org

(Difference between revisions)
Line 5: Line 5:
If this reaction is to be done from scratch, add the reagents in the order they are listed in the table. When multiple PCR experiments need to be run concurrently, everything that is not experiment specific (primers and template DNA) can be made up ahead of time as a master mix. In this case the master mix should be kept on ice as it contains enzymes. The primers and template DNA should be added to a PCR tube and the master mix added just before the sample is put in just before PCR begins.  
If this reaction is to be done from scratch, add the reagents in the order they are listed in the table. When multiple PCR experiments need to be run concurrently, everything that is not experiment specific (primers and template DNA) can be made up ahead of time as a master mix. In this case the master mix should be kept on ice as it contains enzymes. The primers and template DNA should be added to a PCR tube and the master mix added just before the sample is put in just before PCR begins.  
-
{| class="wikitable" style="text-align: center; color: purple;"
+
{| class="wikitable" style="text-align: center;"
||Reagent||50 µl reaction||20 µl reaction||Final Concentration
||Reagent||50 µl reaction||20 µl reaction||Final Concentration
|-
|-
Line 28: Line 28:
PCR machine settings:
PCR machine settings:
-
{|class="wikitable" style="text-align: center; color: purple;"
+
{|class="wikitable" style="text-align: center;"
|colspan="2"| ||Temperature (oc)||Time (s)
|colspan="2"| ||Temperature (oc)||Time (s)
|-
|-

Revision as of 10:41, 13 August 2012

PCR using a high temperature DNA polymerase:

If this reaction is to be done from scratch, add the reagents in the order they are listed in the table. When multiple PCR experiments need to be run concurrently, everything that is not experiment specific (primers and template DNA) can be made up ahead of time as a master mix. In this case the master mix should be kept on ice as it contains enzymes. The primers and template DNA should be added to a PCR tube and the master mix added just before the sample is put in just before PCR begins.

Reagent50 µl reaction20 µl reactionFinal Concentration
H2OAdd to make 50 µlAdd to make 20 µl
5x Phusion buffer HF10 µl4 µl1x
10 mM dNTPs1 µl0.4 µl200 µM
Primer 1x µlx µl0.5 µM
Primer 2x µlx µl0.5 µM
Template DNAx µlx µl
Phusion DNA polymerase0.5 µl0.2 µl0.02 u/ µl

N.B. The volume of primer that needs to be added will vary in accordance with the concentration of DNA in the initial sample.


PCR machine settings:

Temperature (oc)Time (s)
Hold 195360
Cycle (30x)Denaturing9810
Annealing6030
Elongation72120


Notes on Phusion use

  • Using the Tm calculator from [http://www.finnzymes.com/tm_determination.html Finnzymes], if annealing region is less than 20 bp, the annealing temperature should be the same as the highest calculated Tm of the various primers. Otherwise, it should be set to 3 °C above the highest Tm.
  • Allow 15 - 30 seconds per kb for the elongation of product during the elongation step.
  • Do not exceed 1 min per kb of product during the elongation step.
  • Phusion is an excellent polymerase, but expensive. Use for large products and for products that require low error rates (e.g. production from tiny quantities of template).
  • Additionally, only Phusion has been tested in Gibson assembly. Do not substitute (unless you wish to further the sum total of human knowledge) during these reactions.

Safety considerations:No bacteria are used during the reaction there is therefore little or no biological hazard. Nevertheless, it is important to observe correct laboratory procedure and wear appropriate clothing and gloves. PCR occurs at high temperature, and this may present a risk, depending on the PCR machine employed.



Back to Protocols