Team:XMU-China/index2

From 2012.igem.org

(Difference between revisions)
Line 1: Line 1:
-
{{Team:XMU-China/head}}
 
-
{{Team:XMU-China/Leftbar}}
 
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
 +
<head>
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
-
<title>XMU</title>
+
<script type=text/javascript><!--//--><![CDATA[//><!--
-
<script src="https://2012.igem.org/Team:XMU-China/JS/SpryMenuBar.js" type="text/javascript"></script>
+
function menuFix() {
-
<link href="https://2012.igem.org/Team:XMU-China/CSS/SpryMenuBarHorizontal.css" rel="stylesheet" type="text/css" />
+
var sfEls = document.getElementById("menu").getElementsByTagName("li");
 +
for (var i=0; i<sfEls.length; i++) {
 +
sfEls[i].onmouseover=function() {
 +
this.className+=(this.className.length>0? " ": "") + "sfhover";
 +
}
 +
sfEls[i].onMouseDown=function() {
 +
this.className+=(this.className.length>0? " ": "") + "sfhover";
 +
}
 +
sfEls[i].onMouseUp=function() {
 +
this.className+=(this.className.length>0? " ": "") + "sfhover";
 +
}
 +
sfEls[i].onmouseout=function() {
 +
this.className=this.className.replace(new RegExp("( ?|^)sfhover\\b"),
 +
"");
 +
}
 +
}
 +
}
 +
window.onload=menuFix;
 +
//--><!]]></script>
 +
<title>Youbin</title>
-
<style type="text/css">
+
<style>
 +
body {
 +
background:#000;
 +
width:1280px;
 +
height:720px;
 +
}
 +
 +
.pic {
 +
z-index:2;
 +
position:fixed;
 +
margin-top:-153px;
 +
margin-left:-150px;
 +
background:#fff;
 +
width:145px auto;
 +
height:145px;
 +
}
 +
 +
 +
#left {
 +
position:fixed;
 +
z-index:2;
 +
width:100px;
 +
height:1280px auto;
 +
margin-top:-3px;
 +
margin-left:-150px;
 +
}
-
 
+
#left ul {
-
 
+
position:relative;
-
#photo {
+
z-index:1;
-
position:absolute;
+
margin:0 auto;
-
width:840px;
+
margin-left:0px;
-
height:100px;
+
margin-top:0px;
-
z-index:3;
+
height:100px auto;
-
left:145px;
+
float:left;
-
top:80px;
+
background:url(https://static.igem.org/mediawiki/igem.org/a/a2/Left-navigbar.png) 0 0 repeat;
-
visibility:inherit;
+
}
-
padding:30px;
+
 +
#left ul a {
 +
position:relative;
 +
display:block;
 +
width:140px;
 +
height:22px;
 +
margin-left:30px;
 +
line-height:22px;
 +
font-size:14px;
 +
text-decoration:none;
 +
float:left;
 +
color:#000;
 +
}
 +
 +
 +
#left ul a:hover {
 +
background:url() 0 0 no-repeat;
 +
color:#fff;
 +
}
 +
 +
#left ul a#current {
 +
text-align:left;
 +
font-weight:bold;
 +
color:#fff;
 +
}
 +
 +
#menu {
 +
position:fixed;
 +
z-index:2;
 +
margin-left:20px;
 +
margin-top:-28px;
 +
width:1110px;
 +
height:28px;
 +
}
 +
 +
#menu ul {list-style: none; margin: 0px; padding: 0px;}
 +
#menu ul li { width:120px;float:left; margin-left:0px;}
 +
#menu ul li a { display:block; height:28px; line-height:28px; text-align:center; background:url(http://www.aa25.cn/upload/2010-06/27/nav_bg2.gif) 0 0 no-repeat; font-size:16px;}
 +
#menu ul li a:hover {background:url(http://www.aa25.cn/upload/2010-06/27/nav_bg3.gif) 0 0 no-repeat;}
 +
#menu ul li a#current {background:url(http://www.aa25.cn/upload/2010-06/27/nav_bg1.gif) 0 0 no-repeat; font-weight:bold; color:#fff;}
 +
#menu ul li ul { border:1px solid #ccc; display:none; position:relative;}
 +
#menu ul li ul li { float:none;background:#eee; margin:0;}
 +
#menu ul li ul li a {background:none;font-size:11px;height:20px auto;}
 +
#menu ul li ul li a:hover {background:#333; color:#ff0;font-size:11px;height:20px auto;}
 +
#menu ul li:hover ul { display:block;}
 +
#menu ul li.sfhover ul { display:block;}
 +
 +
#passage {
 +
z-index:1;
 +
position:relative;
 +
margin-top:0px;
 +
margin-left:50px;
 +
background:#fff;
 +
width:1110px auto;
 +
height:700px;
}
}
-
#description {
 
-
position: absolute;
 
-
width:840px;
 
-
left: 135px;
 
-
top: 70px;
 
-
margin:30px;
 
-
table-layout:fixed;
 
-
height:350px;
 
 +
#abso {
 +
z-index:1;
 +
position:relative;
 +
margin-top:0px;
 +
margin-left:-10px;
 +
background:#fff;
 +
width:1110px;
 +
height:700px;
}
}
 +
</style>
</style>
Line 38: Line 135:
<body>
<body>
 +
<div class=pic align=left>
 +
<img src="https://static.igem.org/mediawiki/2012/6/67/Schoolbadge.gif" alt="Schoolbadge.gif" width="150px" height="150px" />
 +
<img src="https://static.igem.org/mediawiki/2012/6/67/Schoolbadge.gif" alt="Schoolbadge.gif" width="150px" height="150px"  />
 +
</div>
 +
<div id="left">
 +
  <ul>
 +
  <a href="#">Description</a>
 +
  <a href="#">Main results</a>
 +
  <a href="#">Data</a>
 +
  <a href="#">Protocals</a>
 +
      <a href="#">Team members</a>
 +
  </ul>
 +
<img src="https://static.igem.org/mediawiki/2012/a/a5/Leftbar.png"
 +
width="170px" height="600px"  />
 +
</div>
-
<!--<div id="photo"><img src="" alt="放图~" name="用来放图~" width="100%" height="100%"  id="photo2"  /></div> -->
+
<div id="menu">
 +
<ul>
 +
<li><a id="current" href="#">Home</a></li>
-
<div id="description"><table width="100%" border="0" cellspacing="0" cellpadding="0" >
+
<li><a href="#">Team</a>
-
<tr>
+
<ul>
-
<p>Description</p>
+
      <li><a href="#">Instructors</a></li>
-
<hr />
+
      <li><a href="#">Advisors</a></li>
-
</tr>
+
      <li><a href="#">Team members</a></li>
-
  <tr>
+
      <li><a href="#">Acknowledgement</a></li>
-
     <td><img src="https://static.igem.org/mediawiki/2012/c/cd/Fig2.png" alt="pictures/fig2.png" width="108" height="168" /></td>
+
      <li><a href="#">Collaborations</a></li>
-
    <td><p>&nbsp;&nbsp;&nbsp;&nbsp;The aim of this study is to construct a fluorescent digital display device of genetic circuits with synthetic logic gates. The finished device will display and switch numbers. Similar to electronic circuits, logic regulation operation in cells integrates the extracellular and intracellular signals. We assemble several pairs of promoters and their activators (or repressors) into computing building block of the circuit: <I>P<font size="1px">BAD</font></I>-Arabinose,<I>P<font size="1px">cI</font></I>-CI, and <I>P<font size="1px">tetR</font></I>-TetR. These computation units act as genetic logic gates perform AND, OR and NOT gates function. In order to light up our digital numbers, we put Green Fluorescent Protein (GFP) in the downstream expression, which is ubiquitous in the field of biological signal protein. Considering that the common types of GFP usually tend to be very stable and hard to "quench", we choose unstable GFP to make our device reusable and convert in a fast speed. This unstable GFP is tagged with a C-terminal extension, which will be recognized and degraded by tail-specific proteases, leading to a short half-life and fast degradation of the protein. Degradation rate should be confined at a suitable range, otherwise the device would either have no light or take a long time to change numbers. </a><br />
+
      <li><a href="#">Our city & Our university</a></li>
 +
    </ul>
 +
</li>
 +
 
 +
<li><a href="#">Project</a>
 +
<ul>
 +
      <li><a href="#">Background(Approach Program)</a></li>
 +
      <li><a href="#">Section A</a></li>
 +
      <li><a href="#">Section B</a></li>
 +
      <li><a href="#">Accomplishment</a></li>
 +
      <li><a href="#">Data page</a></li>
 +
      <li><a href="#">Future plan</a></li>
 +
      <li><a href="#">Reference</a></li>
 +
     </ul>
 +
</li>
 +
 
 +
<li><a href="#">Parts</a>
 +
    <ul>
 +
      <li><a href="#">Parts submitted</a></li>
 +
      <li><a href="#">Attrivutions</a></li>
 +
    </ul>
 +
</li>
 +
 
 +
<li><a href="#">Notebook</a>
 +
<ul>
 +
      <li><a href="#">Brainstorm</a></li>
 +
      <li><a href="#">Wet lab journal</a></li>
 +
      <li><a href="#">Protocols</a></li>
 +
    </ul>
 +
</li>
 +
 
 +
<li><a href="#">Safety</a></li>
 +
 
 +
<li><a href="#">HumanPractice</a>
 +
    <ul>
 +
      <li><a href="#">Exhibition</a></li>
 +
      <li><a href="#">Communication</a></li>
 +
    </ul>
 +
</li>
 +
 
 +
<li><a href="#https://2012.igem.org">iGEM</a></li>
 +
 
 +
</ul>
 +
</div>
 +
 
 +
<div id="ab"> </div>
 +
 
 +
<div id="passage" align=left>
 +
&nbsp;&nbsp;&nbsp;&nbsp;The aim of this study is to construct a fluorescent digital display device of genetic circuits with synthetic logic gates. The finished device will display and switch numbers. Similar to electronic circuits, logic regulation operation in cells integrates the extracellular and intracellular signals. We assemble several pairs of promoters and their activators (or repressors) into computing building block of the circuit: <I>P<font size="1px">BAD</font></I>-Arabinose,<I>P<font size="1px">cI</font></I>-CI, and <I>P<font size="1px">tetR</font></I>-TetR. These computation units act as genetic logic gates perform AND, OR and NOT gates function. In order to light up our digital numbers, we put Green Fluorescent Protein (GFP) in the downstream expression, which is ubiquitous in the field of biological signal protein. Considering that the common types of GFP usually tend to be very stable and hard to "quench", we choose unstable GFP to make our device reusable and convert in a fast speed. This unstable GFP is tagged with a C-terminal extension, which will be recognized and degraded by tail-specific proteases, leading to a short half-life and fast degradation of the protein. Degradation rate should be confined at a suitable range, otherwise the device would either have no light or take a long time to change numbers. </a><br />
          
          
         &nbsp;&nbsp;&nbsp;&nbsp;Moreover, we intend to develop a unique display device in such a way that each unit lights up one after another. To meet the challenge, we set out to engineer a series of cells with variable time-delayed expression characters under the inspiration of Feed Forward Loops (FFLs) in transcription network. As shown in Figure 1, both X and Y are transcriptional activators of coherent type 1 FFL with "AND-gate" function. When signal Sx appears, X becomes active and stimulates the downstream promoters, which are capable of inducing the production of Y and Z. Due to the "AND gate" function, Z starts to accumulate only when Y yields at a threshold. By controlling the Y production and the activation threshold for the <I>Z</I> promoter, we can alter the duration of time-delay in the expression of GFP. Lux system will still play an important role based on our project last year. Promoter <I>luxpR</I> with various modifications in threshold will be created by site-directed mutagenesis.
         &nbsp;&nbsp;&nbsp;&nbsp;Moreover, we intend to develop a unique display device in such a way that each unit lights up one after another. To meet the challenge, we set out to engineer a series of cells with variable time-delayed expression characters under the inspiration of Feed Forward Loops (FFLs) in transcription network. As shown in Figure 1, both X and Y are transcriptional activators of coherent type 1 FFL with "AND-gate" function. When signal Sx appears, X becomes active and stimulates the downstream promoters, which are capable of inducing the production of Y and Z. Due to the "AND gate" function, Z starts to accumulate only when Y yields at a threshold. By controlling the Y production and the activation threshold for the <I>Z</I> promoter, we can alter the duration of time-delay in the expression of GFP. Lux system will still play an important role based on our project last year. Promoter <I>luxpR</I> with various modifications in threshold will be created by site-directed mutagenesis.
-
                         
+
</div>
-
      <p>
+
 
-
      <p>
+
 
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>
+
-
      <p>test1                                                                                   
+
</body>
</body>
</html>
</html>

Revision as of 15:50, 6 August 2012

Youbin

Schoolbadge.gif Schoolbadge.gif
    The aim of this study is to construct a fluorescent digital display device of genetic circuits with synthetic logic gates. The finished device will display and switch numbers. Similar to electronic circuits, logic regulation operation in cells integrates the extracellular and intracellular signals. We assemble several pairs of promoters and their activators (or repressors) into computing building block of the circuit: PBAD-Arabinose,PcI-CI, and PtetR-TetR. These computation units act as genetic logic gates perform AND, OR and NOT gates function. In order to light up our digital numbers, we put Green Fluorescent Protein (GFP) in the downstream expression, which is ubiquitous in the field of biological signal protein. Considering that the common types of GFP usually tend to be very stable and hard to "quench", we choose unstable GFP to make our device reusable and convert in a fast speed. This unstable GFP is tagged with a C-terminal extension, which will be recognized and degraded by tail-specific proteases, leading to a short half-life and fast degradation of the protein. Degradation rate should be confined at a suitable range, otherwise the device would either have no light or take a long time to change numbers.
    Moreover, we intend to develop a unique display device in such a way that each unit lights up one after another. To meet the challenge, we set out to engineer a series of cells with variable time-delayed expression characters under the inspiration of Feed Forward Loops (FFLs) in transcription network. As shown in Figure 1, both X and Y are transcriptional activators of coherent type 1 FFL with "AND-gate" function. When signal Sx appears, X becomes active and stimulates the downstream promoters, which are capable of inducing the production of Y and Z. Due to the "AND gate" function, Z starts to accumulate only when Y yields at a threshold. By controlling the Y production and the activation threshold for the Z promoter, we can alter the duration of time-delay in the expression of GFP. Lux system will still play an important role based on our project last year. Promoter luxpR with various modifications in threshold will be created by site-directed mutagenesis.