Team:MIT/Motivation
From 2012.igem.org
(Difference between revisions)
Line 90: | Line 90: | ||
<center><img src="https://static.igem.org/mediawiki/2012/4/4a/MIT_Curly_strands_square_root_circuit.png" width=570/></center> | <center><img src="https://static.igem.org/mediawiki/2012/4/4a/MIT_Curly_strands_square_root_circuit.png" width=570/></center> | ||
- | Image courtesy of Lulu Qian. | + | <i>Image courtesy of Lulu Qian.</i> |
- | + | </br> | |
</br>Each of these: | </br>Each of these: | ||
</br><img src="https://static.igem.org/mediawiki/2012/6/6c/MIT_Curly_strand_1.png" height=30> <img src="https://static.igem.org/mediawiki/2012/3/36/MIT_Curly_strand_2.png" height=15> | </br><img src="https://static.igem.org/mediawiki/2012/6/6c/MIT_Curly_strand_1.png" height=30> <img src="https://static.igem.org/mediawiki/2012/3/36/MIT_Curly_strand_2.png" height=15> |
Revision as of 03:11, 27 October 2012
Background and Motivation
In the near future, biological circuits will be much more modular and sophisticated than they are now, with a ten-fold smaller nucleotide footprint.
The Enabling Technology: Toehold-Mediated Strand Displacement
Background
Qian and Winfree (Science 2011) utilized DNA computation to create AND and OR logic gates in vitro. They constructed a sophisticated binary square root circuit using these gates:Motivation for Bringing Strand Displacement to Mammalian Synthetic Biology
- More sophisticated circuits with smaller nucleotide footprint
Sophistication of traditional transcription-translational circuits has grown linearly over the past 10 years, while sophistication of strand-displacement circuits has grown nearly exponentially. - Simple combinatorial design space With 4 nucleotides, we can create a nearly infinite number of orthogonal sequences leading to orthogonal parts.
- Ease of composition The input motif matches the output motif allowing for modular cascading reactions.
- Tunability We can set arbitrary digital signal thresholds by varying the concentration of circuit species. We can also achieve signal amplification by including a fuel molecule.