Team:Penn/ProjectResults
From 2012.igem.org
Line 17: | Line 17: | ||
<p style="color:black;text-indent:30px;">What if you could combine spatial targeting and cellular targeting into the same therapeutic? This idea is unprecedented but would allow for precise targeting of specific cells within a specific area, leaving healthy tissue intact and keeping side effects to a minimum.</p> | <p style="color:black;text-indent:30px;">What if you could combine spatial targeting and cellular targeting into the same therapeutic? This idea is unprecedented but would allow for precise targeting of specific cells within a specific area, leaving healthy tissue intact and keeping side effects to a minimum.</p> | ||
- | <p style="color:black;text-indent:30px;">The 2012 Penn iGEM team has engineered a novel platform for targeted therapeutics | + | <p style="color:black;text-indent:30px;">The 2012 Penn iGEM team has engineered a novel platform for targeted therapeutics that employs simultaneous spatial and cellular targeting. We have achieved spatial (and temporal) targeting with a blue light-switchable transgene expression system and cellular targeting through display of an antibody-mimetic protein on the surface of E. coli for the first time.</p> |
- | <p style="color:black;text-indent:30px;">As a proof of concept, we applied our system to the treatment of cancer, a disease in which spatial and cellular targeting are of utmost importance. We displayed a high-affinity antibody-mimetic protein | + | <p style="color:black;text-indent:30px;">As a proof of concept, we applied our system to the treatment of cancer, a disease in which spatial and cellular targeting are of utmost importance. We displayed a high-affinity antibody-mimetic protein that targets Human Epidermal Growth Factor Receptor 2 (HER2), a protein commonly overexpressed in cancer cells, especially in breac cancer tumors. We combined this cellular targeting with a light-activated cytotoxic protein delivery system to successfully target and kill breast cancer cells.</p> |
</div> | </div> | ||
Line 27: | Line 27: | ||
<br> | <br> | ||
- | <p style="color:black;text-indent:30px;">Upon conception of this project, we realized that although hundreds of academic research projects and iGEM projects have been conducted in the realm of Health and Medicine, almost no engineered bacterial therapeutics have been brought to the clinic. We analyzed the hurdles and road ahead for bacterial synthetic biology-enabled therapeutics, compiling a thorough report with specific actions | + | <p style="color:black;text-indent:30px;">Upon conception of this project, we realized that although hundreds of academic research projects and iGEM projects have been conducted in the realm of Health and Medicine, almost no engineered bacterial therapeutics have been brought to the clinic. We analyzed the hurdles and road ahead for bacterial synthetic biology-enabled therapeutics, compiling a thorough report with specific actions that iGEM teams in Health/Medicine can take to make their therapies more clinically tractable. This project directly informed our wet lab work, leading us to port our therapeutic system into a non-pathogenic, probiotic bacterial strain which is already used in human therapies today.</p> |
<p style="color:black;text-indent:30px;">We hope our targeted therapeutic platform will allow other scientists and iGEM teams to target any cells they choose. In the near term, we are planning to test our cancer cell targeting/killing bacterial system in a mouse model and make a real impact on cancer research and therapy.</p> | <p style="color:black;text-indent:30px;">We hope our targeted therapeutic platform will allow other scientists and iGEM teams to target any cells they choose. In the near term, we are planning to test our cancer cell targeting/killing bacterial system in a mouse model and make a real impact on cancer research and therapy.</p> | ||
</div> | </div> |
Revision as of 20:54, 26 October 2012
What if you could combine spatial targeting and cellular targeting into the same therapeutic? This idea is unprecedented but would allow for precise targeting of specific cells within a specific area, leaving healthy tissue intact and keeping side effects to a minimum.
The 2012 Penn iGEM team has engineered a novel platform for targeted therapeutics that employs simultaneous spatial and cellular targeting. We have achieved spatial (and temporal) targeting with a blue light-switchable transgene expression system and cellular targeting through display of an antibody-mimetic protein on the surface of E. coli for the first time.
As a proof of concept, we applied our system to the treatment of cancer, a disease in which spatial and cellular targeting are of utmost importance. We displayed a high-affinity antibody-mimetic protein that targets Human Epidermal Growth Factor Receptor 2 (HER2), a protein commonly overexpressed in cancer cells, especially in breac cancer tumors. We combined this cellular targeting with a light-activated cytotoxic protein delivery system to successfully target and kill breast cancer cells.
Upon conception of this project, we realized that although hundreds of academic research projects and iGEM projects have been conducted in the realm of Health and Medicine, almost no engineered bacterial therapeutics have been brought to the clinic. We analyzed the hurdles and road ahead for bacterial synthetic biology-enabled therapeutics, compiling a thorough report with specific actions that iGEM teams in Health/Medicine can take to make their therapies more clinically tractable. This project directly informed our wet lab work, leading us to port our therapeutic system into a non-pathogenic, probiotic bacterial strain which is already used in human therapies today.
We hope our targeted therapeutic platform will allow other scientists and iGEM teams to target any cells they choose. In the near term, we are planning to test our cancer cell targeting/killing bacterial system in a mouse model and make a real impact on cancer research and therapy.