Team:Purdue/Modeling

From 2012.igem.org

(Difference between revisions)
Line 45: Line 45:
<h2> Equations </h2>
<h2> Equations </h2>
 +
<ul>
 +
<h5> The growth of the Biofilm can be modeled with modified continuous growth models. Traditional models of population growth make use of basic differential equations to measure the change in population over unit time. At the most fundamental level <p>
 +
<style>
 +
    td.upper_line { border-top:solid 1px black; }
 +
    table.fraction { text-align: center; vertical-align: middle;
 +
        margin-top:0.5em; margin-bottom:0.5em; line-height: 2em; }
 +
</style>
 +
 +
<table class="fraction" align="center" cellpadding="0" cellspacing="0">
 +
    <tr>
 +
        <td rowspan="2" nowrap="nowrap">
 +
            Population Change Rate = 
 +
        </td><td nowrap="nowrap">
 +
            <i>dN</i>
 +
        </td>
 +
        <td rowspan = "2" nowrap = "nowrap">
 +
              = rN(1-N/K)
 +
        </td>
 +
    </tr><tr>
 +
        <td class="upper_line">
 +
            <i>dt</i>
 +
        </td>
 +
    </tr><tr>
 +
 
 +
  </table>
 +
</p>
 +
 +
Where r is the positive rate of growth, K is the positive carrying capacity of the environment, and N is the population level.
 +
</h5>
 +
</ul>
<h2> Outcomes </h2>
<h2> Outcomes </h2>
Line 101: Line 131:
</script>
</script>
 +
 +
 +
<h3> References </h3>
 +
<ul>
 +
<h5>
 +
 +
</h5>
 +
</ul>

Revision as of 19:27, 8 July 2012


Modeling

Design

  • Desired Outcomes of Models
  • Levels of Abstractions
    • Biofilter response to Environmental conditions
      • Shear
      • Flow
      • Temperature
      • Abiotic Surface (Adhesion)
    • Formation of Silica Matrix
    • BioFilm Development
      • Model of Bacterial Growth, Death, Breaking Off
    • Expression of Proteins
      • Response to addition of IPTG
      • Optimal Production rate/expression of Curli and OmpA-Silicatein Alpha protiens
      • Control Systems
      • Fine Tuning of Protein Expression with RBS/Promoter combination variants
  • Platforms
  • Considerations and Assumption
  • Parameters

Equations

    The growth of the Biofilm can be modeled with modified continuous growth models. Traditional models of population growth make use of basic differential equations to measure the change in population over unit time. At the most fundamental level

    Population Change Rate = dN = rN(1-N/K)
    dt

    Where r is the positive rate of growth, K is the positive carrying capacity of the environment, and N is the population level.

Outcomes

Parameter Theoretical Value Experimental Value Analysis
Parameter 1 ____ ____ ____
Parameter 2 ____ ____ ____
Parameter 3 ____ ____ ____
Parameter 4 ____ ____ ____

References