Team:Lethbridge/projectfuture

From 2012.igem.org

(Difference between revisions)
 
Line 27: Line 27:
<li><a class="active" href="https://2012.igem.org/Team:Lethbridge/projectoverview">The Project</a></li>
<li><a class="active" href="https://2012.igem.org/Team:Lethbridge/projectoverview">The Project</a></li>
-
<li><a href="#">Results</a></li>
+
<li><a href="https://2012.igem.org/Team:Lethbridge/results">Results</a></li>
<li><a href="#">Notebook</a></li>
<li><a href="#">Notebook</a></li>
<li><a href="https://2012.igem.org/Team:Lethbridge/parts">Parts</a></li>
<li><a href="https://2012.igem.org/Team:Lethbridge/parts">Parts</a></li>

Latest revision as of 03:05, 4 October 2012

2012 iGEM - University of Lethbridge

Significance and Future Direction

Developing new methods for extraction of unconventional oil deposits is necessary to meet global oil demands. Using a synthetic biology approach we have outlined a novel, inexpensive method for MEOR from carbonate oil deposits. Carbon capture will be coupled with biological production of acetic acid and biosurfactant to increase recovery from carbonate oil deposits while reducing emissions of greenhouse gases. CAB extraction will eliminate the need for developing bacteria that can survive in the extreme environment of oil reserves, since CAB products will be secreted into the growth media for collection before application in MEOR. In this way, the concentration of acetic acid and biosurfactant applied to the carbonate rock can be carefully controlled to facilitate enhanced and efficient oil recovery. Using natural carbon fixation pathways to fuel bacterial growth will reduce costs associated with maintaining bacterial cultures. Alternatively, the use of inexpensive sugars such as molasses from sugar refining can be used to support biological production of acetic acid and rhamnolipid17. As CAB extraction can be used for large-scale bioreactors, there will be reduced risk for environmental contamination by genetically modified organisms, and an inducible “kill switch” integrated into the bacterial genome provides further safety measures. The modular approach of CAB extraction will allow for individual optimization of carbon fixation and sugar production that can be applied to a variety of biological systems to capture CO2 for conversion into useful products. In future, synthetic carbon fixation pathways11 can be targeting into bacteria to enhance carbon capture for applications