Team:RHIT/Outreach
From 2012.igem.org
Line 100: | Line 100: | ||
<div align="center"><img src="https://static.igem.org/mediawiki/igem.org/1/19/THCM_collab.png" width="90%"/></div><br /> | <div align="center"><img src="https://static.igem.org/mediawiki/igem.org/1/19/THCM_collab.png" width="90%"/></div><br /> | ||
<h4>Origins of the Project</h4> | <h4>Origins of the Project</h4> | ||
- | <p>The Terre Haute Children's Museum, founded in 1988, features many exhibits on topics ranging from archaeology to architecture. However, the Rose-Hulman team noticed that there are no exhibits on small-scale biology, specifically synthetic biology. Devon and Kristen then took on the project of creating an exhibit to introduce children to the concepts and methods of synthetic biology. The team felt that one of the best ways to get kids interested in synthetic biology was to show them lab equipment that they could touch and play with. The exhibit also gives kids a chance to explore designing DNA sequences. In this way, they can experience a process that synthetic biologists go through.</p> | + | <p>The <a href="http://www.terrehautechildrensmuseum.com/">Terre Haute Children's Museum</a>, founded in 1988, features many exhibits on topics ranging from archaeology to architecture. However, the Rose-Hulman team noticed that there are no exhibits on small-scale biology, specifically synthetic biology. Devon and Kristen then took on the project of creating an exhibit to introduce children to the concepts and methods of synthetic biology. The team felt that one of the best ways to get kids interested in synthetic biology was to show them lab equipment that they could touch and play with. The exhibit also gives kids a chance to explore designing DNA sequences. In this way, they can experience a process that synthetic biologists go through.</p> |
<h4>Exhibit Components</h4> | <h4>Exhibit Components</h4> | ||
<p>The Design Table, pictured below, introduces children to the idea of putting together DNA sequences. The instructions on the table ask them to think of ways they would use synthetic biology if they could make cells "do anything." The team hopes that this will inspire them to use creativity to explore the possibilities of synthetic biology. Colored magnetic shapes are used to represent DNA. Children can select from different colors, each with a different purpose - the four DNA nucleotide bases, A, T, G, and C, as well as Promoters and Terminators - and align them on the board to create their sequence. They also have the option of putting together various sequences found on cards on the table or create the matching sequence to given DNA sequences. This gives more uncertain children the chance to understand the process. Examples of these cards are seen below.</p><br /> | <p>The Design Table, pictured below, introduces children to the idea of putting together DNA sequences. The instructions on the table ask them to think of ways they would use synthetic biology if they could make cells "do anything." The team hopes that this will inspire them to use creativity to explore the possibilities of synthetic biology. Colored magnetic shapes are used to represent DNA. Children can select from different colors, each with a different purpose - the four DNA nucleotide bases, A, T, G, and C, as well as Promoters and Terminators - and align them on the board to create their sequence. They also have the option of putting together various sequences found on cards on the table or create the matching sequence to given DNA sequences. This gives more uncertain children the chance to understand the process. Examples of these cards are seen below.</p><br /> |
Revision as of 00:04, 4 October 2012