Team:Johns Hopkins-Wetware/yeastgoldengate
From 2012.igem.org
Line 86: | Line 86: | ||
</figure> | </figure> | ||
<p> | <p> | ||
- | The assembly of a TU may be carried out by simultaneous digestion and ligation, referred to here as a one-pot reaction. Donor constructs, encoding the promoter, ORF, and terminator parts, are introduced into a single reaction vessel along with BsaI and T4 DNA ligase. Further included is an acceptor vector specifically designed to encode signature overhangs, exposed by BsaI digestion, that are compatible with the 5' and 3' ends of the promoter and terminator, respectively. The combination of digestion and ligation leads to essentially reversible digestion of BsaI sites except when components of the TU/acceptor vector ligate; in this instance the BsaI site is eliminated. Over time the reaction generates more and more of the desired product. We eliminate background of intact donor molecules entirely by (i) a 5 minute at 50°C BsaI digestion to linearize residual acceptor vector molecules and (ii) encoding a different drug resistance marker in the acceptor vector. Finally, the parent acceptor vector encodes RFP between the BsaI sites. The RFP gene in the acceptor vector yields red colonies such that assembly of the TU in place of RFP is readily identified visually. Successful ligation will result in white colonies whereas re-ligated acceptor vectors will retain the RFP and present as red colonies. In practice, due to the 5 minute 50°C step that follows the 37°C incubation, a condition in which BsaI is active and the ligase is not, the background of red colonies is driven below the limit of detection in most instances.Other easily screenable or visual markers may be substituted for RFP and similarly, other combinations of drug markers could be used instead of Kan and Amp. | + | The assembly of a TU may be carried out by simultaneous digestion and ligation, referred to here as a one-pot reaction. Donor constructs, encoding the promoter, ORF, and terminator parts, are introduced into a single reaction vessel along with BsaI and T4 DNA ligase. Further included is an acceptor vector specifically designed to encode signature overhangs, exposed by BsaI digestion, that are compatible with the 5' and 3' ends of the promoter and terminator, respectively. The combination of digestion and ligation leads to essentially reversible digestion of BsaI sites except when components of the TU/acceptor vector ligate; in this instance the BsaI site is eliminated. |
+ | |||
+ | Over time the reaction generates more and more of the desired product. We eliminate background of intact donor molecules entirely by (i) a 5 minute at 50°C BsaI digestion to linearize residual acceptor vector molecules and (ii) encoding a different drug resistance marker in the acceptor vector. Finally, the parent acceptor vector encodes RFP between the BsaI sites. The RFP gene in the acceptor vector yields red colonies such that assembly of the TU in place of RFP is readily identified visually. Successful ligation will result in white colonies whereas re-ligated acceptor vectors will retain the RFP and present as red colonies. In practice, due to the 5 minute 50°C step that follows the 37°C incubation, a condition in which BsaI is active and the ligase is not, the background of red colonies is driven below the limit of detection in most instances.Other easily screenable or visual markers may be substituted for RFP and similarly, other combinations of drug markers could be used instead of Kan and Amp. | ||
</p> | </p> | ||
</div> | </div> |