Team:Johns Hopkins-Wetware/humanpractice

From 2012.igem.org

(Difference between revisions)
(Created page with "<html></div></div></div></div></div></div></p> <head> <title>JHU iGEM 2012</title> <link rel="shortcut icon" href="https://static.igem.org/mediawiki/2012/b/be/Bluejay_2_32x32x32....")
Line 15: Line 15:
</div>
</div>
<div id="header_logo">
<div id="header_logo">
-
<a href="index.html"><img src="https://static.igem.org/mediawiki/2012/8/8f/Jhuigem2012header.png"/></a>
+
<a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware"><img src="https://static.igem.org/mediawiki/2012/8/8f/Jhuigem2012header.png"/></a>
</div> <!--end div header_logo-->
</div> <!--end div header_logo-->
<ul id="navbar">
<ul id="navbar">

Revision as of 11:31, 3 October 2012

JHU iGEM 2012
Human Practice

iGEM Human Practices has led to a wealth of materials available online for anyone interested in synthetic biology. There are a number of resources including lecture presentations, discussions on the ethics of synthetic biology, and lab resources such as animations or protocols.

This led us to consider how to develop a standard course which could be implemented in any biology lab to teach the basics of synthetic biology. We decided the best way would be to produce a lab component which could be integrated into a general biology curriculum. Furthermore, this could provide an educational experience to the college student who does not plan on majoring in the STEM (Science/Technology/Engineering/Mathematics) fields.

We have developed a module which would fit into introductory college labs. Instructors can use this module and integrate a synthetic biology perspective into their molecular biology lab lessons. The module includes lectures on synthetic biology principles such as abstraction and standardization. Our goal is to introduce the field to a broader range of students, not just those planning to major in a biological science or engineering field. Students will leave with more concrete ideas about what synthetic biology is.

The Design

With the assistance of advisors who had developed and assisted with the Build-a-Genome course, we began the design process.


Our goals were to:

1. Encourage students to learn the language of synthetic biology.

2. Teach basic molecular biology lab techniques with synthetic biology applications.

3. Discuss current synthetic biology research.

4. Discuss ethical issues in the framework of the project.


Examining general biology lab manuals, it seemed the best way to accomplish these goals would be to have students work on a project utilizing the molecular biology lab techniques taught in class.

With this idea in mind, we established a workflow in which students take a bioparts all the way from PCR amplification to cloning and sequence analysis. We brainstormed what an instructor might require to adapt part of the general biology lab to make bioparts.

Implementation
The BioParts Database
Screenshot of the BioParts Database.

JHU iGEM members had the opportunity to test the class during the summer in order to troubleshoot and optimize protocols. It also served as an opportunity to provide less experienced team members instruction and advice on basic molecular biology techniques. The team also invited a student from Baltimore Polytechnic High School to participate in the trial bioparts course.

We asked a post-doctoral fellow from the Boeke lab to serve as an instructor for the course. The syllabus is here (insert link to pdf). Since part of the assumption in designing the course was that students would also be attending general biology lectures, our instructor provided basic lessons on molecular biology as well as presentations on molecular biology lab techniques. In addition, scientists from the Boeke Lab gave presentations explaining how they would use the parts.

The trial run gave us a chance to modify the protocol and make adjustments to our syllabus, lab manual, and software. Our team also made 900 parts (link to parts page). Our high school student informed us at the end of the course that it was exciting to contribute to an actual research project. Furthermore, this gave him a concrete example of what synthetic biology is.

Future Plans

The team submitted RFC88: Yeast Golden Gate: Standardized Assembly of S. Cerevisiae Transcription Units. This describes the assembly standard which the parts made during the course conform to. Our vision is that the parts course will allow the academic community access to golden gate parts. A repository of these parts will be maintained at JHU.

The database will be expanded and used as a tool for the parts repository. It will also allow instructors to choose parts to work on and alert the JHU staff when parts are ready for sequencing. This will also be a resource for instructors. We envision parts used for projects to have a link or description to the project the part will contribute to. This will allow students to see their participation in a scientific endeavor and also provide instructors an opportunity to discuss advanced synthetic biology projects or concepts.

Retrieved from "http://2012.igem.org/Team:Johns_Hopkins-Wetware/humanpractice"