Team:NYU Gallatin/Project/Cloning

From 2012.igem.org

(Difference between revisions)
m
m
Line 11: Line 11:
<li class="menu-312"><a href="/Team:NYU_Gallatin/Safety" title="Our commitment to safety.">Safety</a></li>
<li class="menu-312"><a href="/Team:NYU_Gallatin/Safety" title="Our commitment to safety.">Safety</a></li>
<li class="menu-313"><a href="/Team:NYU_Gallatin/Attributions" title="Give credit where credit is due.">Attributions</a></li>
<li class="menu-313"><a href="/Team:NYU_Gallatin/Attributions" title="Give credit where credit is due.">Attributions</a></li>
-
<li class="menu-306 last"><a href="https://igem.org/Team.cgi?year=2012&amp;team_name=NYU_Gallatin" title="Official iGEM 2012 profile.">Profile</a></li>
+
<li class="menu-306 last"><a href="https://igem.org/Team.cgi?year=2012&team_name=NYU_Gallatin" title="Official iGEM 2012 profile.">Profile</a></li>
</ul></div> <!-- /#main-menu -->
</ul></div> <!-- /#main-menu -->
<div id="page-wrapper"><div id="page">
<div id="page-wrapper"><div id="page">
Line 52: Line 52:
     <center><img style="border: solid black 1px; margin-bottom: 20px;" src="http://farm9.staticflickr.com/8038/8044401408_5ac681d0f7_c.jpg" width=683 /></center><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><h1>Project</h1>
     <center><img style="border: solid black 1px; margin-bottom: 20px;" src="http://farm9.staticflickr.com/8038/8044401408_5ac681d0f7_c.jpg" width=683 /></center><div class="field field-name-body field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><h1>Project</h1>
<p><img src="http://farm9.staticflickr.com/8310/8046195496_184143ce61_m.jpg" style="float: right; margin-bottom: 10px; margin-left: 10px; border: solid black 1px;" />Designer Suzanne Lee showed that bacterial cellulose could be used in novel ways, including to make clothing using a more eco-friendly process. Our team set out to demonstrate that new characteristics could be added to the cellulose produced by Acetobacter xylinum using synthetic biology methods. Altering physical characteristics such as strength, color, odor, etc. would result in exciting new materials to create with. </p>
<p><img src="http://farm9.staticflickr.com/8310/8046195496_184143ce61_m.jpg" style="float: right; margin-bottom: 10px; margin-left: 10px; border: solid black 1px;" />Designer Suzanne Lee showed that bacterial cellulose could be used in novel ways, including to make clothing using a more eco-friendly process. Our team set out to demonstrate that new characteristics could be added to the cellulose produced by Acetobacter xylinum using synthetic biology methods. Altering physical characteristics such as strength, color, odor, etc. would result in exciting new materials to create with. </p>
-
<p>Cellulose is a polymer made up of long β-1,4 glucan chains. In Acetobacter, the enzyme cellulose synthase catalyzes the biosynthesis of cellulose from UDP-glucose. We hypothesized that mixed polymers containing different sugars would have unique physical properties.  Cellulose synthase has been reported to utilize UDP-N-acetylglucosamine (NAG) molecules (components of chitin) as well, resulting in a polymer containing both glucose and NAG units- a cellulose-chitin hybrid. We wanted to test the properties of this new material, so we set out to engineer Acetobacter to produce this hybrid polymer.</p>
+
<p>Cellulose is a polymer made up of long β-1,4 glucan chains. In Acetobacter, the enzyme cellulose synthase catalyzes the biosynthesis of cellulose from UDP-glucose. We hypothesized that mixed polymers containing different sugars would have unique physical properties.  Cellulose synthase has been reported to utilize UDP-N-acetylglucosamine (NAG) molecules (components of chitin) as well, resulting in a polymer containing both glucose and NAG units- a cellulose-chitin hybrid. We wanted to test the properties of this new material, so we set out to engineer Acetobacter to produce this hybrid polymer.</p>
<h1>Strategy</h1>
<h1>Strategy</h1>
<p>The yeast Candida albicans produces chitin and uses it in spore formation. To incorporate NAG into Acetobacter cellulose, we focused on three yeast genes (the pathway consisting of NAG5 (GlcNac kinase) catalyzes the conversion to GlcNac-6P, AGM1 (Phosphoacetyl-glucosamine mutase)  which converts GlcNac-6-P to GlcNac-1-P, and UAP1 (UDP-GlcNac pyrophosphorylase) which adds UDP. </p>
<p>The yeast Candida albicans produces chitin and uses it in spore formation. To incorporate NAG into Acetobacter cellulose, we focused on three yeast genes (the pathway consisting of NAG5 (GlcNac kinase) catalyzes the conversion to GlcNac-6P, AGM1 (Phosphoacetyl-glucosamine mutase)  which converts GlcNac-6-P to GlcNac-1-P, and UAP1 (UDP-GlcNac pyrophosphorylase) which adds UDP. </p>
Line 65: Line 65:
</li>
</li>
<li><a onclick="javascript:$('#g-nag5').toggle();">G-blocks for NAG5</a><br /><div id="g-nag5" style="display: none">
<li><a onclick="javascript:$('#g-nag5').toggle();">G-blocks for NAG5</a><br /><div id="g-nag5" style="display: none">
-
<p>GAATTTCAGATAAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGTGAGGAGGATGAACGACGCATGAGACAAGCTATATTTTCCAACCCTAACGATGCTGCTGAGTATTTGGCAAACTATATCATTGCCAAAATCAACTCCACCCCCAGAACATTTGTTCTTGGCCTTCCAACCGGGTCATCCCCTGAAGGCATTTATGCCAAATTGATCGAAGCCAACAAGCAAGGGCGGGTTAGTTTCAAAAACGTCGTGACCTTCAACATGGACGAGTATTTGGGATTGGCCCCATCTGAC  320</p>
+
<p>GAATTTCAGATAAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGTGAGGAGGATGAACGACGCATGACTGAGA CTAGCATTAG TGGGTTGCGT GGCCCCAAGT CCATGTATTT TATGGAGATTGTTGATGTGT CGTCGCAAGA ATCCAGTGTG TTGTCGAGTA TTGTTGAATC GTTTACGTCTGCGGTATCTG CATCGAACTT GGGGGTATAC TCTGATGAAG TGCTTTGTGA TATCAAACTGTCGTTGAAAG AGAAATCCCC AATTACTATG TTACCTAACT ATAATGTCTC CCCTACAGGCGACGAGCATG GACAGTATTT GGTTATTGAT TTAGGAGGGT</p>
-
<p>CTTCAACATGGACGAGTATTTGGGATTGGCCCCATCTGACTTGCAGTCGTACCATTATTTCATGTACGACAAGTTTTTCAACCATATCGATATCCCGCGTGAAAATATCCACATCTTGAACGGATTGGCCGCAAACATCGACGAGGAGTGTGCCAACTACGAAAAGAAAATCAAACAATACGGAAGAATCGATTTGTTCTTAGGTGGGTTGGGCCCAGAAGGTCATTTGGCATTCAACGAAGCGGGATCATCAAGAAACTCTAAAACAAGAAAGGTCGAGTTGGTCGAAAGTACCATCAAGGCAAACAGCAGGTTTTTCGGG  322</p>
+
<p>CCCTACAGGCGACGAGCATG GACAGTATTT GGTTATTGAT TTAGGAGGGT CGACATTGAG AATAGCAGTGGTAGACATTT CCAAGCCACA CCCAAATTTG TCGAGAAGTG AGAGGATAAC TATAGTTGTGGAAAAGAGTT GGATTATTGG CAACGACTTT AAGAGGATTG ATGGTGAGTT TTTCAAGTATATTGGGTCCA AGATTAACGA GATATTGATG GGACAGAATG TTATTGATGT AAAGTCGGTT ATCAATACTG GTATAACCTG GTCGTTCCCG TTGGAAACAA CCGACTACAA TAGAGGCAAGATCAAGCATG TTTCCAAAGG GTATACTGTG GGAGAGG</p>
-
<p>GGTCGAAAGTACCATCAAGGCAAACAGCAGGTTTTTCGGGAACGACGAGAGCAAGGTCCCTAAATATGCATTGAGTGTTGGTATTTCCACCATCTTGGACAACTCAGACGAAATTGCCATTATCGTGTTGGGCAAAAGTAAACAATTTGCATTGGACAAAACTGTAAACGGGAAACCAAACGACCCAAAATACCCATCAAGCTATTTACAAGACCACGCAAATGTCTTGATTGTTTGCGATAACGCTGCCGCTGGATTAAAGTCAAAGTTGTAGTACTAGTAGCGGCCGCTGCAGTCCGGCAAAAAAGGGCAAGGTGTCACCACC  325</p>
+
<p>CAA TAGAGGCAAGATCAAGCATG TTTCCAAAGG GTATACTGTG GGAGAGGATA TTTACGACAA GGATTTAAAGATGGTTTTGG AAGACACGTT GAGACAAGAG TACGGGTTGA CACTTGACGT GCAGTCTATATTGAACGACT CGTTGGCGGT GTATTCTGCT GGGTGCTTTA TTGATTCGAA GATGAAGTTGGCCATGGTGT TGGGGACAGG GATTAACATG TGCTGTTCCC TAAAAAGGTC AAGTGATATCCACCCCTCCA AGATGTTGGC TGATGCTACG TTGTTTAATT GTGAGCTCTC GTTGTTTGGCCAGAATCTAT GTAAAGACTT TGCTACGAAA TATGATATCA TTATAGACAA</p>
 +
<p> CAGAATCTAT GTAAAGACTT TGCTACGAAA TATGATATCA TTATAGACAA GAGGTTTGCTGGTTTGCTGC ACCACTTTAA GACGTTTATG GAGCCTGACC CTATTACAAA AACGCTTTTCCAGCCGCACG AGTTGATGAC CAGTGGGAGG TACTTGCCAG AATTGACGAG TTGGTGGTGGTAGATTTGA TTGAGGCTGG CGAGATTTTT CAAAATGTTG ACCACCAACA GATGTACCAAGAGTATGGTG GGTTTAGTGG GGAGTTGATT TGTTTTGTGC ATGAGAATGA CGATTATGATGATATACATG ACAAGTTGTG CAAGGCCTAC GGCTGGACGA CGGTTGGGTTGAGTGACATTGTCTGCTTGA AAGAAGTTGT ATCGTGCATT ATCAAGCGGG </p>
 +
<p>GAGTGACATTGTCTGCTTGA AAGAAGTTGT ATCGTGCATT ATCAAGCGGG CGGCGTTTAT TGTTGCCAATGCGATTATTG CGTTTTTCAA ATTGTTGGGC AGTGACGAGT TGGGTGGTGA TGTGACGATTGGGTATGTGG GGTCGGTCTT GAACTACTTT CACAAGTATA GACGGTTGAT TGTTGAGTATGTGAATAGCG CAGAGGAGGC CAAGGGGATA AAGGTTGACT TGAAGTTGAT TGAAAATAGCTCGATTATAG GTGCTGCCAT AGGTGCTGCC TATCATAAG TAGTACTAGTAGCGGCCGCTGCAGTCCGGCAAAAAAGGGCAAGGTGTCACCACC</p>
</div>
</div>
</li>
</li>
Line 78: Line 80:
</li>
</li>
</ul><p>This worked very well, and resulted in the submission of three new parts to the BioBrick Library (Bba_K850000, Bba_K850001, Bba_K850002). We then set out to fuse these three genes into a single pSB1C3-based plasmid. PCR primers were synthesized to bracket each of the three genes and also add sequernce that would facilitate Gibson assembly of the entire pathway. Our reasoning was that we could then use Gibson assembly to piece together the three genes in the pathway together into pSB1C3. The sequences of these primers is shown below. We included two forward primers dfor the AGM1 gene- one that included the T7 promoter (known to work in Acetobacter, whose own promoters are not clearly understood yet), and one that did not.</p>
</ul><p>This worked very well, and resulted in the submission of three new parts to the BioBrick Library (Bba_K850000, Bba_K850001, Bba_K850002). We then set out to fuse these three genes into a single pSB1C3-based plasmid. PCR primers were synthesized to bracket each of the three genes and also add sequernce that would facilitate Gibson assembly of the entire pathway. Our reasoning was that we could then use Gibson assembly to piece together the three genes in the pathway together into pSB1C3. The sequences of these primers is shown below. We included two forward primers dfor the AGM1 gene- one that included the T7 promoter (known to work in Acetobacter, whose own promoters are not clearly understood yet), and one that did not.</p>
-
<p></p><center><img src="http://farm9.staticflickr.com/8035/8049080716_3bef9f0a16_n.jpg" class="border" />   <img src="http://farm9.staticflickr.com/8319/8049081732_b72fe60544_n.jpg" /></center>
+
<p></p><center><img src="http://farm9.staticflickr.com/8035/8049080716_3bef9f0a16_n.jpg" class="border" />   <img src="http://farm9.staticflickr.com/8319/8049081732_b72fe60544_n.jpg" /></center>
<h1>Primers</h1>
<h1>Primers</h1>
<ul><li><a onclick="javascript:$('#f-agm1').toggle();">Forward AGM1 (biobrick plasmid + promoter</a><br /><div id="f-agm1" style="display: none">
<ul><li><a onclick="javascript:$('#f-agm1').toggle();">Forward AGM1 (biobrick plasmid + promoter</a><br /><div id="f-agm1" style="display: none">

Revision as of 05:20, 3 October 2012